A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comprehensive Profiling of Rapamycin Interacting Proteins with Multiple Mass Spectrometry-Based Omics Techniques. | LitMetric

Comprehensive Profiling of Rapamycin Interacting Proteins with Multiple Mass Spectrometry-Based Omics Techniques.

Anal Chem

State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Profiling drug-protein interactions is critical for understanding a drug's mechanism of action and predicting the possible adverse side effects. However, to comprehensively profile drug-protein interactions remains a challenge. To address this issue, we proposed a strategy that integrates multiple mass spectrometry-based omics analysis to provided global drug-protein interactions, including physical interactions and functional interactions, with rapamycin (Rap) as a model. Chemoproteomics profiling reveals 47 Rap binding proteins including the known target protein FKBP12 with high confidence. Gen Ontology enrichment analysis suggested that the Rap binding proteins are implicated in several important cellular processes, such as DNA replication, immunity, autophagy, programmed cell death, aging, transcription modulation, vesicle-mediated transport, membrane organization, and carbohydrate and nucleobase metabolic processes. The phosphoproteomics profiling revealed 255 down-regulated and 150 up-regulated phosphoproteins responding to Rap stimulation; they mainly involve the PI3K-Akt-mTORC1 signaling axis. Untargeted metabolomic profiling revealed 22 down-regulated metabolites and 75 up-regulated metabolites responding to Rap stimulation; they are mainly associated with the synthesis processes of pyrimidine and purine. The integrative multiomics data analysis provides deep insight into the drug-protein interactions and reveals Rap's complicated mechanism of action.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c00867DOI Listing

Publication Analysis

Top Keywords

drug-protein interactions
16
multiple mass
8
mass spectrometry-based
8
spectrometry-based omics
8
mechanism action
8
rap binding
8
binding proteins
8
profiling revealed
8
responding rap
8
rap stimulation
8

Similar Publications