Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay.

Mater Today Bio

Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for biosensing and bioassays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199192PMC
http://dx.doi.org/10.1016/j.mtbio.2023.100656DOI Listing

Publication Analysis

Top Keywords

biosensing bioassay
12
gnzs biosensing
12
catalytic activities
12
catalytic activity
12
surface modification
8
application gnzs
8
catalytic
6
surface
4
modification strategies
4
strategies functional
4

Similar Publications

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Investigation of the small molecule-aptamer interaction is difficult, and it usually lacks information about the conformational change of aptamers that is important for their application. Here, we present the label-free investigation of small molecule-aptamer interactions using a modularized organic electrochemical transistor (OECT) platform. Leveraging the high sensitivity of the OECT, we measured the conformational change of the aptamer encountering its ligand.

View Article and Find Full Text PDF

Self-phosphorylating DNAzyme DK1 enables programmable multi-analyte readout via PfAgo.

Biosens Bioelectron

September 2025

Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School

DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).

View Article and Find Full Text PDF

Water-insensitive down-shifting nanoparticles for sensitive biosensing.

Light Sci Appl

September 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China.

Conventional optical probes suffer from signal degradation in aqueous media, hindering sensitive biodetection. To overcome this, newly developed water-insensitive down-shifting nanoparticles (WINPs) possess superior photophysical properties in the NIR-I window, including high quantum yield and negligible thermal effects, permitting stable, high-contrast signal generation under low excitation power. This advantage facilitated a low-power lateral flow assay capable of highly sensitive avian influenza virus (AIV) detection in the opaque biological matrices (such as avian swabs), mitigating interference issues relying on visible-range signals.

View Article and Find Full Text PDF

Background: Magnetic particles (MPs) are widely used in bioanalytical systems to quickly separate specific targets from complex samples using a magnetic field. MPs can be easily functionalized with bioreceptors to capture, separate, and concentrate biomarkers like proteins, oligonucleotides, and cells. Combining MPs-separation capabilities with electrochemical sensors can greatly enhance the sensitivity of these devices, helping achieve ultralow limits of detection for biomarkers.

View Article and Find Full Text PDF