Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The self-healing properties of nanomaterials to resist electron beam damage are of great concern, which is inspiring to improve the stability and electron transfer efficiency of nanoelectronic devices especially in an abnormal environment. However, the influence of electron beam insertion on the electron transfer efficiency of single nanoentities at a heterogeneous electrochemical interface is still in debate, which is a concern for the development of liquid cell transmission electron microscopy of the next generation. Herein, we employ an electro-optical imaging technique and directly visualize the controllable recovery of electron transfer ability for single Prussian blue nanoparticle (PBNP) after electron beam insertion with different electron doses. While eliminating e-beam damage by decreasing charge accumulation, the precise control of electron insertion behaviors induces a lossless chemical reduction mechanism for metal ions on the framework structure of PBNP, which leads to static imbalance and temporarily blocks the electron transfer channels. A subsequent charge rebalance process at a sub-nanoparticle level driven by electrochemical cycling controllably rebuilds the ion migration channels on the outer layer of single PBNP to repair the electron transfer path, which is confirmed by single-nanoparticle spectral characterizations. This work provides a generic methodology to study the electron-particle interplay and mechanism of electrode materials for eliminating the heterogeneity of electrochemical activity down to a sub-nanoparticle level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c02391 | DOI Listing |