Between noise and function: Toward a taxonomy of the non-canonical translatome.

Cell Syst

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA. Electronic address:

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eukaryotic genomes are pervasively translated, but the properties of translated sequences outside of canonical genes are poorly understood. A new study in Cell Systems reveals a large translatome that is not under significant evolutionary constraint but is still an active part of diverse cellular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cels.2023.04.004DOI Listing

Publication Analysis

Top Keywords

noise function
4
function taxonomy
4
taxonomy non-canonical
4
non-canonical translatome
4
translatome eukaryotic
4
eukaryotic genomes
4
genomes pervasively
4
pervasively translated
4
translated properties
4
properties translated
4

Similar Publications

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF