98%
921
2 minutes
20
Among the 13 types of propolis classified in Brazil according to their physicochemical properties, green propolis and brown propolis are the most commonly found and used. In this work, a comparison of the physicochemical properties of green and brown propolis produced in Minas Gerais, Brazil was performed according to the methodology established by the Brazilian legislation. And, the content of 9 bioactive compounds in the samples was determined by RP-HPLC. GrProp showed a higher content of pinocembrin, artepillin C and baccharin, and a higher quantity of total flavonoids, in comparison with BrwProp. The mechanical mass content in both types of propolis was above the limit established by legislation. However, the other physicochemical parameters were within the limits. The chemical composition, especially the flavonoid content and the free radical (DPPH) scavenger property confer to both types of propolis a promising pharmacological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202300382 | DOI Listing |
Chem Commun (Camb)
September 2025
College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.
A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFJ Org Chem
September 2025
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Norma
Internucleoside guanidinium linkages are excellent mimics of phosphodiesters and have been used to improve the properties of oligonucleotides. Herein we reported a step economic bimolecular simultaneous macrocyclization (BSM) protocol to prepare cyclic dinucleotide (CDN) analogues with guanidinium linkages. Compared with the 26 steps protocol reported in literature, the current method could provide CDN analogues with internucleoside guanidinium linkages in 9 steps, and the key intermediate prepared in the first 3 steps could be shared to prepare CDN analogues with different nucleobases.
View Article and Find Full Text PDFBiosystems
September 2025
Department of Physics, Razi University, Kermanshah, Iran.
From a physics perspective, DNA and RNA molecules are characterized as dynamic biological structures that exhibit vibrations across a range of time scales. To conduct a more accurate investigation of their dynamic properties, it is essential to consider the environmental conditions surrounding these molecules. A harmonic Hamiltonian that incorporates damping, along with the Green's function method, has been utilized to analyze the vibrational responses of viscous DNA and RNA strands.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, Saharanpur, 247001, Uttar Pradesh, India. Electronic address:
In the modern era, polymyrcene, a sustainable polymer made from renewable resources, offers a potential path towards the advancement of green products. Here, we successfully created and characterized the first-ever all-bio-based composite films using cellulose nanocrystals (CNCs) made from agricultural waste, polylactic acid (PLA), and polymyrcene. Environmentally acceptable substitutes for traditional polymer composites have been made possible by incorporating CNCs into the PLA-Polymyrcene matrix, which produced materials with improved structural and functional qualities.
View Article and Find Full Text PDF