Wearable Smart Bandage-Based Bio-Sensors.

Biosensors (Basel)

Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bandage is a well-established industry, whereas wearable electronics is an emerging industry. This review presents the bandage as the base of wearable bioelectronics. It begins with introducing a detailed background to bandages and the development of bandage-based smart sensors, which is followed by a sequential discussion of the technical characteristics of the existing bandages, a more practical methodology for future applications, and manufacturing processes of bandage-based wearable biosensors. The review then elaborates on the advantages of basing the next generation of wearables, such as acceptance by the customers and system approvals, and disposal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136806PMC
http://dx.doi.org/10.3390/bios13040462DOI Listing

Publication Analysis

Top Keywords

wearable
4
wearable smart
4
smart bandage-based
4
bandage-based bio-sensors
4
bio-sensors bandage
4
bandage well-established
4
well-established industry
4
industry wearable
4
wearable electronics
4
electronics emerging
4

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Skin-adaptive focused flexible micromachined ultrasound transducers for wearable cardiovascular health monitoring.

Sci Adv

September 2025

State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En

Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.

View Article and Find Full Text PDF

Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.

View Article and Find Full Text PDF

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

Dynamic optimization is a versatile control tool to determine optimal control inputs in a redundantly actuated wearable robot. However, dynamic optimization requires high computational resources for real-time implementation. In this paper, we present a bio-inspired control approach, based on the principle of muscle synergies, to reduce the computational cost of optimization.

View Article and Find Full Text PDF