98%
921
2 minutes
20
Plants synthesize tens of thousands of bioactive nitrogen-containing compounds called alkaloids, including some clinically important drugs in modern medicine. The discovery of new alkaloid structures and their metabolism in plants have provided ways to access these rich sources of bioactivities including new-to-nature compounds relevant to therapeutic and industrial applications. This review discusses recent advances in alkaloid biosynthesis discovery, including complete pathway elucidations. Additionally, the latest developments in the production of new and established plant alkaloids based on either biosynthesis or semisynthesis are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2023.102379 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Saarland University, Department of Pharmacy, Saarbrücken, Germany.
Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in hosts.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 Jiangsu Province, China.
Pectinases are indispensable biocatalysts for pectin degradation in food and bioprocessing industries, yet natural enzymes often lack tailored functionalities for modern applications. While a previous review discussed pectinases in terms of production and application, this review particularly discusses an integrated framework for robust pectinases. This framework combines enzyme mining, protein engineering, and AI-assisted design to systematically discover, optimize, and customize pectinases.
View Article and Find Full Text PDF