Using root economics traits to predict biotic plant soil-feedbacks.

Plant Soil

Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Plant-soil feedbacks have been recognised as playing a key role in a range of ecological processes, including succession, invasion, species coexistence and population dynamics. However, there is substantial variation between species in the strength of plant-soil feedbacks and predicting this variation remains challenging. Here, we propose an original concept to predict the outcome of plant-soil feedbacks. We hypothesize that plants with different combinations of root traits culture different proportions of pathogens and mutualists in their soils and that this contributes to differences in performance between home soils (cultured by conspecifics) versus away soils (cultured by heterospecifics). We use the recently described root economics space, which identifies two gradients in root traits. A conservation gradient distinguishes fast vs. slow species, and from growth defence theory we predict that these species culture different amounts of pathogens in their soils. A collaboration gradient distinguishes species that associate with mycorrhizae to outsource soil nutrient acquisition vs. those which use a "do it yourself" strategy and capture nutrients without relying strongly on mycorrhizae. We provide a framework, which predicts that the strength and direction of the biotic feedback between a pair of species is determined by the dissimilarity between them along each axis of the root economics space. We then use data from two case studies to show how to apply the framework, by analysing the response of plant-soil feedbacks to measures of distance and position along each axis and find some support for our predictions. Finally, we highlight further areas where our framework could be developed and propose study designs that would help to fill current research gaps.

Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-05948-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167139PMC
http://dx.doi.org/10.1007/s11104-023-05948-1DOI Listing

Publication Analysis

Top Keywords

plant-soil feedbacks
16
root economics
12
root traits
8
soils cultured
8
economics space
8
gradient distinguishes
8
species
6
root
5
economics traits
4
traits predict
4

Similar Publications

Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

Continental-scale metabolomic fingerprint and antialgal activity of coastal invasive plant Spartina alterniflora: regional heterogeneity and driving factors.

Environ Res

September 2025

Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, China; Joint Center for Blue Carbon Research, Ocean Academy, Zhejiang University, Zhoushan, 316021, China; Donghai Laboratory, Zhoushan, 316021, China; Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Sec

Spartina alterniflora as a potential algaecide has invaded coastal ecosystems globally. However, the regional heterogeneity and driving factors of the metabolomic fingerprint in S. alterniflora are still unknown.

View Article and Find Full Text PDF

The Feedback of Stress Phytohormones in (L.) on Soil Multi-Contamination.

Plants (Basel)

August 2025

Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic.

As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones (jasmonates, salicylic acid, and abscisic acid), in oat ( L.) using anthropogenically contaminated soil in a 4-week pot experiment.

View Article and Find Full Text PDF

This study investigates the ecological stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) across the leaf-litter-soil continuum in the block stream forest community of Laotudingzi Mountain, a representative paleo-periglacial landform in northeastern China. Utilizing X-ray fluorescence spectroscopy (XRF), we analyzed 13 dominant tree species (10 broadleaf, 3 coniferous) to unravel nutrient limitation mechanisms and cross-media coupling in this oligotrophic cryogenic ecosystem. Results indicate that P is the primary limiting nutrient, with mean N: P ratios in leaves (12.

View Article and Find Full Text PDF