Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166660PMC
http://dx.doi.org/10.4110/in.2023.23.e19DOI Listing

Publication Analysis

Top Keywords

immunological memory
12
covid-19 vaccines
12
pre-existing immunity
8
endemic human
8
human coronaviruses
8
immune response
8
response covid-19
8
hcov spike
8
spike ags
8
mouse model
8

Similar Publications

Previous epidemiological research has shown that immune cells have a significant impact on the progression and development of psoriatic arthritis (PsA). However, the causal relationship between immune cell characteristics and PsA remains uncertain. A bidirectional 2-sample Mendelian randomization analysis was conducted, using data from publicly available genome-wide association studies.

View Article and Find Full Text PDF

[Preschool-age children maintain a distinct immunological memory after SARS-CoV-2 infection].

Med Sci (Paris)

September 2025

Université Paris Cité, Inserm U1151, CNRS UMR8253, Institut Necker-Enfants malades, Paris, France - Université Paris Cité, Faculté de médecine, Paris, France - AP-HP, Hôpital Necker-Enfants malades, Paris, France.

View Article and Find Full Text PDF

Background: Protein-polysaccharide conjugate vaccines rely on the induction of T-cell-dependent responses that support germinal center (GC) reactions to potentiate the expansion of antigen-specific memory B-cell (MBC) populations and high-avidity antibody responses. The effects of adjuvants on B-cell and antibody responses are well described for protein antigens but remain largely unexplored for conjugated polysaccharidic antigens.

Methods: We assessed the effects of five adjuvants present in licensed vaccines (AS01, AS03, AS04, and aluminum hydroxide [Alum]) or under clinical evaluation (AS37) on the magnitude and quality of antigen-specific antibody responses and local/systemic B-cell responses.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs), including Infantile Epileptic Spasms Syndrome (IESS) and Lennox-Gastaut Syndrome (LGS), are severe pediatric conditions characterized by profound developmental delays and treatment-resistant epilepsy. Although steroid therapies provide some clinical benefits, the underlying immunological mechanisms remain poorly understood. In this study, we performed comprehensive immune profiling using multi-parametric flow cytometry on PBMCs from IESS (n=25) and LGS (n=9) patients, comparing them with age-matched healthy controls (n=54).

View Article and Find Full Text PDF

Cancer vaccines in hematologic malignancy: A systematic review of the rational and evidence for clinical use.

Best Pract Res Clin Haematol

September 2025

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.

Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.

View Article and Find Full Text PDF