A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Clinical Validation of an Artificial Intelligence Model for Detecting Distal Radius, Ulnar Styloid, and Scaphoid Fractures on Conventional Wrist Radiographs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to assess the feasibility and performance of an artificial intelligence (AI) model for detecting three common wrist fractures: distal radius, ulnar styloid process, and scaphoid. The AI model was trained with a dataset of 4432 images containing both fractured and non-fractured wrist images. In total, 593 subjects were included in the clinical test. Two human experts independently diagnosed and labeled the fracture sites using bounding boxes to build the ground truth. Two novice radiologists also performed the same task, both with and without model assistance. The sensitivity, specificity, accuracy, and area under the curve (AUC) were calculated for each wrist location. The AUC for detecting distal radius, ulnar styloid, and scaphoid fractures per wrist were 0.903 (95% C.I. 0.887-0.918), 0.925 (95% C.I. 0.911-0.939), and 0.808 (95% C.I. 0.748-0.967), respectively. When assisted by the AI model, the scaphoid fracture AUC of the two novice radiologists significantly increased from 0.75 (95% C.I. 0.66-0.83) to 0.85 (95% C.I. 0.77-0.93) and from 0.71 (95% C.I. 0.62-0.80) to 0.80 (95% C.I. 0.71-0.88), respectively. Overall, the developed AI model was found to be reliable for detecting wrist fractures, particularly for scaphoid fractures, which are commonly missed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178713PMC
http://dx.doi.org/10.3390/diagnostics13091657DOI Listing

Publication Analysis

Top Keywords

distal radius
12
radius ulnar
12
ulnar styloid
12
scaphoid fractures
12
artificial intelligence
8
intelligence model
8
model detecting
8
detecting distal
8
styloid scaphoid
8
wrist fractures
8

Similar Publications