Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The discovery of chiral spin texture has unveiled many unusual yet extraordinary physical phenomena, such as the Néel type domain walls and magnetic skyrmions. A recent theoretical study suggests that a chiral exchange interaction is not limited to a single ferromagnetic layer; instead, three-dimensional spin textures can arise from an interlayer Dzyaloshinskii-Moriya interaction. However, the influence of chiral interlayer exchange coupling on the electrical manipulation of magnetization has rarely been addressed. Here, the coexistence of both symmetric and chiral interlayer exchange coupling between two orthogonally magnetized CoFeB layers in PtMn/CoFeB/W/CoFeB/MgO is demonstrated. Images from polar magneto-optical Kerr effect microscopy indicate that the two types of coupling act concurrently to induce asymmetric domain wall propagation, where the velocities of domain walls with opposite chiralities are substantially different. Based on this microscopic mechanism, field-free switching of the perpendicularly magnetized CoFeB is achieved with a wide range of W thicknesses of 0.6-4.5 nm. This work enriches the understanding of interlayer exchange coupling for spintronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c11875DOI Listing

Publication Analysis

Top Keywords

interlayer exchange
16
exchange coupling
16
chiral interlayer
12
asymmetric domain
8
domain wall
8
wall propagation
8
domain walls
8
magnetized cofeb
8
chiral
5
exchange
5

Similar Publications

Emergent ferromagnetism on the surface of two-dimensional (2D) MXene is investigated by X-ray magnetic circular dichroism (XMCD) and angle-dependent hard X-ray photoemission spectroscopy (HAXPES). Focusing on CrN as one of the 2D-MXenes, high quality bilayers of CrN/Co and CrN/Pt are prepared by a magnetron sputtering technique. XMCD reveals the induced magnetic moment of Cr in the CrN/Co interface, while it is not observed in the CrN/Pt interface at room temperature.

View Article and Find Full Text PDF

Ball-milled biochar-vermiculite/zeolite magnetic composites for adsorption of lead and p-nitrophenol from wastewater: Synthesis, performance, and mechanisms.

Environ Res

September 2025

School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; School of Ecology and Environment, Hainan University, Haikou 570228, China. Electronic address:

Herein, ball-milled magnetic biochar-vermiculite composite (MBC@VT) and ball-milled magnetic biochar-zeolite composite (MBC@ZT) were synthesized via one-step ball-milling, and their adsorption capacities for Pb(II)/P-nitrophenol (PNP) in water were compared. The results demonstrated that the removal of Pb(II) and PNP through both materials was a complex, endothermic reaction mainly driven by chemisorption, with strong tolerance to pH changes and co-existing ions. MBC@VT showed superior adsorption for Pb(II) (reaching 367.

View Article and Find Full Text PDF

Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure.

Sci Adv

September 2025

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states.

View Article and Find Full Text PDF

Layered van der Waals (vdW) materials, characterized by their interlayer vdW gaps, offer exceptional tunability of magnetic properties via intercalation chemistry. A wide range of magnetic behaviors have been observed in nonmagnetic transition-metal dichalcogenides intercalated with magnetic atoms. Beyond the incorporation of magnetic ions, we propose the controlled alkali-ion intercalation of intrinsic vdW magnets as a strategy to probe and manipulate spin populations and exchange interactions within individual magnetic layers.

View Article and Find Full Text PDF

This study presents a simple method for embedding inorganic-organic hybrid lead halide perovskite (CHNH)PbX (X = Cl, Br, or I) nanocrystals (NCs) into the interlayer spaces of the layered polysilicate kenyaite. (CHNH)PbX NC-embedded kenyaite composites (MPX@kenyaite) were synthesized by immersing Pb-containing kenyaite in (CHNH)X-containing 2-propanol. According to X-ray diffraction, small-angle X-ray scattering, and scanning transmission electron microscopy analyses, (CHNH)PbX NCs with diameters of 5.

View Article and Find Full Text PDF