A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The impact of various carbon nanomaterials on the morphological, behavioural, and biochemical parameters of rainbow trout in the early life stages. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the increasing production and the number of potential applications of carbon nanomaterials, mainly from the graphene family, their release into the natural environment, especially to aquatic ecosystems, is inevitable. The aim of the study was to determine the effects of various carbon nanomaterials (graphene nanoflakes (GNF), graphene oxide (GO), reduced graphene oxide (RGO) and silicon carbide nanofibers (NFSiC) in the concentration of 4 mg L on the early life stages of the rainbow trout Oncorhynchus mykiss. The survival rates of O. mykiss were not affected after 36 days of exposure to studied materials, except for RGO, which caused significant mortality of both embryos and larvae compared to the control conditions. Larvae exposed to GO and NFSiC were characterized by a smaller standard body length at hatch, whereas at the end of the experiment, the growth of fish exposed to all materials was accelerated, especially in GO and RGO treatment, in which higher body weight and length were accompanied by lower volume of the yolk sac. Neither the markers of the oxidative damage nor the antioxidant enzymes activities were significantly affected in embryos, newly hatched larvae and larvae after 26-day exposure to studied carbon nanomaterials. Also, no neurotoxic effect expressed by the activity of the whole-body acetylcholinesterase was observed. Nevertheless, the significant increase in the velocity and the overall activity of larvae exposed to GNF (not investigated after exposure to other materials) must be highlighted. The most pronounced effect of RGO might be connected with its large particle size, sharp edges, and the presence of TiO nanoparticles. The results indicate for the first time that various carbon nanomaterials potentially released into aquatic ecosystems may have serious developmental implications for the early life stages of salmonid fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2023.106550DOI Listing

Publication Analysis

Top Keywords

carbon nanomaterials
20
early life
12
life stages
12
rainbow trout
8
nanomaterials graphene
8
aquatic ecosystems
8
graphene oxide
8
exposure studied
8
larvae exposed
8
nanomaterials
5

Similar Publications