The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair.

Proc Natl Acad Sci U S A

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193940PMC
http://dx.doi.org/10.1073/pnas.2303479120DOI Listing

Publication Analysis

Top Keywords

chromosome segregation
16
rpa-rnf20-snf2h cascade
8
proper chromosome
8
homologous recombination
8
recombination repair
8
segregation dna
8
dna repair
8
genome stability
8
recruits rnf20
8
chromosome
6

Similar Publications

Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.

View Article and Find Full Text PDF

Association of fertility traits with markers of oocyte competence in dairy cattle.

J Dairy Sci

September 2025

Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706. Electronic address:

Fertility traits such as daughter pregnancy rate (DPR), cow conception rate, and heifer conception rate are key predictors of reproductive performance in dairy herds. However, their low heritability, likely due to their multifactorial nature and difficulty in measuring phenotypes, poses challenges for genetic improvement. Oocyte competence, encompassing nuclear and cytoplasmic maturation, is a critical factor influencing fertility.

View Article and Find Full Text PDF

Unlabelled: Meiotic crossovers are needed to produce genetically balanced gametes. In mammals, crossover formation is mediated by a conserved set of pro-crossover proteins via mechanisms that remain unclear. Here, we characterize a mammalian pro-crossover factor HEIP1.

View Article and Find Full Text PDF