98%
921
2 minutes
20
Epidermal growth factor receptor (EGFR) is a prominent target for anticancer therapy due to its role in activating several cell signaling cascades. Clinically approved EGFR inhibitors are reported to show treatment resistance and toxicity, this study, therefore, investigates phytochemicals to find potent and safe anti-EGFR compounds. For that, phytochemicals were screened based on drug-likeness and molecular docking analysis followed by molecular dynamics simulation, density functional theory analysis and ADMET analysis to identify the effective inhibitors of EGFR tyrosine kinase (EGFR-TK) domain. Known EGFR-TK inhibitors (1-4 generations) were used as control. Among 146 phytochemicals, 136 compounds showed drug-likeness, of which Delta 7-Avenasterol was the most potential EGFR-TK inhibitor with a binding energy of -9.2 kcal/mol followed by 24-Methylenecholesterol (-9.1 kcal/mol), Campesterol (-9.0 kcal/mol) and Ellagic acid (-9.0 kcal/mol). In comparison, the highest binding affinity from control drugs was displayed by Rociletinib (-9.0 kcal/mol). The molecular dynamics simulation (100 ns) exhibited the structural stability of native EGFR-TK and protein-inhibitor complexes. Further, MM/PBSA computed the binding free energies of protein complex with Delta 7-Avenasterol, 24-Methylenecholesterol, Campesterol and Ellagic acid as -154.559 ± 18.591 kJ/mol, -139.176 ± 19.236 kJ/mol, -136.212 ± 17.598 kJ/mol and -139.513 ± 23.832 kJ/mol, respectively. Non-polar interactions were the major contributors to these energies. The density functional theory analysis also established the stability of these inhibitor compounds. ADMET analysis depicted acceptable outcomes for all top phytochemicals without displaying any toxicity. In conclusion, this report has identified promising EGFR-TK inhibitors to treat several cancers that can be further investigated through laboratory and clinical tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2206288 | DOI Listing |
JCI Insight
September 2025
Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, United States of America.
Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.
The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDF