98%
921
2 minutes
20
Cancer diagnosis and management have been a slow-evolving area in medical science. Conventional therapies have by far proved to have various limitations. Also, the concept of immunotherapy which was thought to revolutionize the management of cancer has presented its range of drawbacks. To overcome these limitations nanoparticulate-derived diagnostic and therapeutic strategies are emerging. These nanomaterials are to be explored as they serve as a prospect for cancer theranostics. Nanoparticles have a significant yet unclear role in screening as well as therapy of cancer. However, nanogels and Photodynamic therapy is one such approach to be developed in cancer theranostics. Photoactive cancer theranostics is a vivid area that might prove to help manage cancer. Also, the utilization of the quantum dots as a diagnostic tool and to selectively kill cancer cells, especially in CNS tumors. Additionally, the redox-sensitive micelles targeting the tumor microenvironment of the cancer are also an important theranostic tool. This review focuses on exploring various agents that are currently being studied or can further be studied as cancer theranostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161386 | PMC |
http://dx.doi.org/10.7150/ntno.82263 | DOI Listing |
J Clin Oncol
September 2025
Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine, Baltimore, MD.
Purpose: To assess modified folinic acid/leucovorin, fluorouracil, irinotecan, oxaliplatin (FOLFIRINOX; mFFX) versus gemcitabine/nab-paclitaxel (GnP) in de novo metastatic pancreatic ductal adenocarcinoma (PDAC) and explore predictive biomarkers.
Patients And Methods: Patients were randomly assigned 1:1 to mFFX or GnP with exclusion of germline pathogenic variants in or . The primary end point was progression-free survival (PFS) between arms with 0.
Sci Transl Med
September 2025
Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
Gene signatures predictive of chemotherapeutic response have the potential to extend the reach of precision medicine by allowing oncologists to optimize treatment for individuals. Most published predictive signatures are only capable of predicting response for individual drugs, but most chemotherapy regimens utilize combinations of different agents. We propose a unified framework, called the chemogram, that uses predictive signatures to rank the relative predicted sensitivity of different drugs for individual tumors.
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2025
Associate Director Laboratory for Molecular Pediatric Pathology (LaMPP), Boston Children's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
Next-generation sequencing (NGS) has transformed cancer care by providing essential insights for diagnosis, prognosis, and treatment. However, variability in testing timing, reporting practices, and interpretation challenges limits its clinical impact. This manuscript highlights key opportunities to optimize somatic reporting, emphasizing the importance of timely testing throughout the cancer care continuum to maximize the diagnostic and therapeutic relevance of findings.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.
View Article and Find Full Text PDF