Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Periodate (PI)-photoactivated advanced oxidation process (AOP) has recently received increasing attention for the removal of micropollutants from water. However, periodate is mainly driven by high-energy ultraviolet light (UV) in most cases, and few studies have extended it to the visible range. Herein, we proposed a new PI visible light activation system employing α-FeO as catalyst. It is completely different from traditional PI-AOP based on hydroxyl radicals (•OH) and iodine radical (•IO). The vis-α-FeO/PI system can selectively degrade the phenolic compounds via non-radical pathway under the visible range. Notably, the designed system not only shows a well pH tolerance and environmental stability, but also exhibits a strong substrate-dependent reactivity. Both quenching experiments and electron paramagnetic resonance (EPR) experiments demonstrate that photogenerated holes are the main active species in this system. Moreover, a series of photoelectrochemical experiments reveal that PI can effectively inhibit the carrier recombination on the α-FeO surface, thereby improving the utilization of photogenerated charges and increasing the number of photogenerated holes, which effectively reacts with 4-CP through electron transfer way. In a word, this work proposes a cost-effective, green and mild mean to activate PI, and provides a facile way to solve the fatal shortcomings (i.e., inappropriate band edge position, rapid charge recombination and short hole diffusion length) of traditional iron oxide semiconductor photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131506DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
8
electron transfer
8
pathway visible
8
visible range
8
photogenerated holes
8
α-feo mediated
4
mediated periodate
4
periodate activation
4
activation selective
4
selective degradation
4

Similar Publications

As potent therapeutic agents, the pharmacological potentials of natural substances have been the subject of recent research. Around the world, numerous tribes and ethnic communities have long used Linn. (Family: ) to treat variety of illnesses.

View Article and Find Full Text PDF

Gene expression dynamics in and treated with and subsp. essential oils.

Front Microbiol

August 2025

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

Essential oils (EOs) hold significant potential as antimicrobials in food, due to their high concentration of active phenolic compounds. These compounds can target bacterial cells through various mechanisms, such as membrane disruption, inhibition, and interference in virulence factors, affecting microorganisms at a genomic level. and are key foodborne bacteria that could be managed using these natural preservatives.

View Article and Find Full Text PDF

Tobacco ( L.) is well-known as an economic crop whose quality is evaluated according to its aroma quality. Researchers have found that selenium application can increase the aroma quality of tobacco, but until now, its mechanism is still unclear.

View Article and Find Full Text PDF

Tetramethylpyrazine (TMP), a bioactive alkaloid isolated from the traditional Chinese medicine (, has gained significant attention for its therapeutic potential in cerebrovascular diseases and cognitive impairment, mainly due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, its clinical application is often limited by suboptimal pharmacokinetic characteristics and modest potency. This review highlights recent advancements in the structure-activity relationship (SAR) optimization of TMP, focusing on its derivatives' neuroprotective efficacy and vascular benefits.

View Article and Find Full Text PDF