A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ensemble classifier fostered detection of arrhythmia using ECG data. | LitMetric

Ensemble classifier fostered detection of arrhythmia using ECG data.

Med Biol Eng Comput

Department of Electronics and Communication Engineering, K.S.Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu, India.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrocardiogram (ECG) is a non-invasive medical tool that divulges the rhythm and function of the human heart. This is broadly employed in heart disease detection including arrhythmia. Arrhythmia is a general term for abnormal heart rhythms that can be identified and classified into many categories. Automatic ECG analysis is provided by arrhythmia categorization in cardiac patient monitoring systems. It aids cardiologists to diagnose the ECG signal. In this work, an Ensemble classifier is proposed for accurate arrhythmia detection using ECG Signal. Input data are taken from the MIT-BIH arrhythmia dataset. Then the input data was pre-processed using Python in Jupyter Notebook which run the code in an isolated manner and was able to keep code, formula, comments, and images. Then, Residual Exemplars Local Binary Pattern is applied for extracting statistical features. The extracted features are given to ensemble classifiers, like Support vector machines (SVM), Naive Bayes (NB), and random forest (RF) for classifying the arrhythmia as normal (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown beat (Q). The proposed AD-Ensemble SVM-NB-RF method is implemented in Python. The proposed AD-Ensemble SVM-NB-RF method is 44.57%, 52.41%, and 29.49% higher accuracy; 2.01%, 3.33%, and 3.19% higher area under the curve (AUC); and 21.52%, 23.05%, and 12.68% better F-Measure compared with existing models, like multi-model depending on the ensemble of deep learning for ECG heartbeats arrhythmia categorization (AD-Ensemble CNN-LSTM-RRHOS), ECG signal categorization utilizing VGGNet: a neural network based classification method (AD-Ensemble CNN-LSTM) and higher performance arrhythmic heartbeat categorization utilizing ensemble learning along PSD based feature extraction method (AD-Ensemble MLP-NB-RF).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-02839-6DOI Listing

Publication Analysis

Top Keywords

ecg signal
12
ensemble classifier
8
arrhythmia
8
arrhythmia categorization
8
input data
8
ectopic beat
8
proposed ad-ensemble
8
ad-ensemble svm-nb-rf
8
svm-nb-rf method
8
categorization utilizing
8

Similar Publications