Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electroencephalography measures are of interest in developmental neuroscience as potentially reliable clinical markers of brain function. Features extracted from electroencephalography are most often averaged across individuals in a population with a particular condition and compared statistically to the mean of a typically developing group, or a group with a different condition, to define whether a feature is representative of the populations as a whole. However, there can be large variability within a population, and electroencephalography features often change dramatically with age, making comparisons difficult. Combined with often low numbers of trials and low signal-to-noise ratios in pediatric populations, establishing biomarkers can be difficult in practice. One approach is to identify electroencephalography features that are less variable between individuals and are relatively stable in a healthy population during development. To identify such features in resting-state electroencephalography, which can be readily measured in many populations, we introduce an innovative application of statistical measures of variance for the analysis of resting-state electroencephalography data. Using these statistical measures, we quantified electroencephalography features commonly used to measure brain development-including power, connectivity, phase-amplitude coupling, entropy, and fractal dimension-according to their intersubject variability. Results from 51 6-month-old infants revealed that the complexity measures, including fractal dimension and entropy, followed by connectivity were the least variable features across participants. This stability was found to be greatest in the right parietotemporal region for both complexity feature, but no significant region of interest was found for connectivity feature. This study deepens our understanding of physiological patterns of electroencephalography data in developing brains, provides an example of how statistical measures can be used to analyze variability in resting-state electroencephalography in a homogeneous group of healthy infants, contributes to the establishment of robust electroencephalography biomarkers of neurodevelopment through the application of variance analyses, and reveals that nonlinear measures may be most relevant biomarkers of neurodevelopment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321121PMC
http://dx.doi.org/10.1093/cercor/bhad154DOI Listing

Publication Analysis

Top Keywords

electroencephalography features
12
resting-state electroencephalography
12
statistical measures
12
electroencephalography
10
electroencephalography data
8
biomarkers neurodevelopment
8
features
7
measures
6
inter-individual variability
4
variability neurodevelopment
4

Similar Publications

Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.

View Article and Find Full Text PDF