Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Small-molecule inhibitors of the RNA-binding and regulating protein LIN28 have the potential to be developed as chemical probes for biological perturbation and as therapeutic candidates. Reported small molecules disrupting the interaction between LIN28 and let-7 miRNA suffer from moderate to weak inhibitory activity and flat structure-activity relationship, which hindered the development of next-generation LIN28 inhibitors that warrant further evaluations. We report herein the identification of new LIN28 inhibitors utilizing a spirocyclization strategy based on a chromenopyrazole scaffold. Representative compounds 2-5 showed potent in vitro inhibitory activity against LIN28-let-7 interaction and single-digit micromolar potency in inhibiting the proliferation of LIN28-expressing JAR cancer cells. The spirocyclic compound 5 incorporated a position that is amenable for functional group appendage and further structural modifications. The binding mode of compound 5 with the LIN28 cold shock domain was rationalized via a molecular docking analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202300168 | DOI Listing |