Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the effects of genetic variation in gene regulatory elements is crucial to interpreting genome function. This is particularly pertinent for the hundreds of thousands of disease-associated variants identified by GWAS, which frequently sit within gene regulatory elements but whose functional effects are often unknown. Current methods are limited in their scalability and ability to assay regulatory variants in their endogenous context, independently of other tightly linked variants. Here, we present a new medium-throughput screening system: genome engineering based interrogation of enhancers assay for transposase accessible chromatin (GenIE-ATAC), that measures the effect of individual variants on chromatin accessibility in their endogenous genomic and chromatin context. We employ this assay to screen for the effects of regulatory variants in human induced pluripotent stem cells, validating a subset of causal variants, and extend our software package (rgenie) to analyse these new data. We demonstrate that this methodology can be used to understand the impact of defined deletions and point mutations within transcription factor binding sites. We thus establish GenIE-ATAC as a method to screen for the effect of gene regulatory element variation, allowing identification and prioritisation of causal variants from GWAS for functional follow-up and understanding the mechanisms of regulatory element function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287956PMC
http://dx.doi.org/10.1093/nar/gkad332DOI Listing

Publication Analysis

Top Keywords

regulatory variants
12
gene regulatory
12
variants
8
chromatin genie-atac
8
regulatory elements
8
causal variants
8
regulatory element
8
regulatory
7
screening functional
4
functional regulatory
4

Similar Publications

IGL::CCND1 detected by optical genome mapping revises diagnosis of a B-cell lymphoma.

Am J Clin Pathol

September 2025

Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.

Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.

View Article and Find Full Text PDF

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

The cytosolic iron-sulfur cluster assembly (CIA) targeting complex maturates over 30 cytosolic and nuclear Fe-S proteins, raising the question of how a single complex recognizes such a diverse set of clients. The discovery of a C-terminal targeting complex recognition (TCR) peptide in up to 25% of CIA clients provided a clue to substrate specificity, yet the molecular and energetic basis for this interaction remained unresolved. By integrating computational and biochemical approaches, we show that the TCR peptide binds a conserved interface between the Cia1 and Cia2 subunits of the targeting complex, even in the absence of the Fe-S cluster.

View Article and Find Full Text PDF