98%
921
2 minutes
20
Oculomotor deficits are common in hereditary ataxia, but disproportionally neglected in clinical ataxia scales and as outcome measures for interventional trials. Quantitative assessment of oculomotor function has become increasingly available and thus applicable in multicenter trials and offers the opportunity to capture severity and progression of oculomotor impairment in a sensitive and reliable manner. In this consensus paper of the Ataxia Global Initiative Working Group On Digital Oculomotor Biomarkers, based on a systematic literature review, we propose harmonized methodology and measurement parameters for the quantitative assessment of oculomotor function in natural-history studies and clinical trials in hereditary ataxia. MEDLINE was searched for articles reporting on oculomotor/vestibular properties in ataxia patients and a study-tailored quality-assessment was performed. One-hundred-and-seventeen articles reporting on subjects with genetically confirmed (n=1134) or suspected hereditary ataxia (n=198), and degenerative ataxias with sporadic presentation (n=480) were included and subject to data extraction. Based on robust discrimination from controls, correlation with disease-severity, sensitivity to change, and feasibility in international multicenter settings as prerequisite for clinical trials, we prioritize a core-set of five eye-movement types: (i) pursuit eye movements, (ii) saccadic eye movements, (iii) fixation, (iv) eccentric gaze holding, and (v) rotational vestibulo-ocular reflex. We provide detailed guidelines for their acquisition, and recommendations on the quantitative parameters to extract. Limitations include low study quality, heterogeneity in patient populations, and lack of longitudinal studies. Standardization of quantitative oculomotor assessments will facilitate their implementation, interpretation, and validation in clinical trials, and ultimately advance our understanding of the evolution of oculomotor network dysfunction in hereditary ataxias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102387 | PMC |
http://dx.doi.org/10.1007/s12311-023-01559-9 | DOI Listing |
BMC Neurol
September 2025
Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.
Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.
View Article and Find Full Text PDFCerebellum
September 2025
Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
Spinocerebellar ataxia type 27B (SCA27B), caused by GAA repeat expansions in FGF14, is an increasingly recognized form of late-onset cerebellar ataxia. However, early diagnosis remains challenging due to mild or absent cerebellar motor signs and often normal brain magnetic resonance imaging (MRI). Oculovestibular abnormalities, although prevalent, are frequently overlooked and not captured by standard clinical scales such as the Scale for the Assessment and Rating of Ataxia (SARA).
View Article and Find Full Text PDFCerebellum
September 2025
Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
Although intensive rehabilitation has achieved short-term benefits in patients with spinocerebellar degeneration, long-term outcomes of periodic intervention remain unclear, particularly in patients with pure spinocerebellar ataxia types 6 (SCA6) and 31 (SCA31). To investigate the longitudinal effects of annual intensive rehabilitation on ataxic symptoms and balance function in patients with pure cerebellar type SCA6 and SCA31. Seven patients with genetically confirmed SCA6 or SCA31 participated in annual 4-week intensive rehabilitation programmes.
View Article and Find Full Text PDFCerebellum
September 2025
Human Genetics Laboratory, School of Health Sciences, University of the State of Amazonas - Avenida Carvalho Leal, 1777, Manaus, 69065-001, AM, Brazil.
The Spinocerebellar Ataxias (SCAs) are a group of hereditary neurodegenerative diseases that show a variable distribution among distinct ethnicities and geographic regions. In Brazil, a large and highly admixed country, the prevalence of SCAs has been investigated mostly in limited areas. Here we characterized the frequencies of SCA types in the state of Amazonas, as well as the geographic origin of SCA families, and compared them to the literature data available about the frequency of SCAs in other Brazilian regions.
View Article and Find Full Text PDFBrain
September 2025
Medical Genetics Center (MGZ) Munich, 80335 Munich, Germany.
Hereditary adult-onset ataxias are a heterogeneous group of phenotypically overlapping conditions, often caused by pathogenic expansions of short tandem repeats. Currently, 18 repeat disorders with a core phenotype of adult-onset ataxia are known. Diagnosis typically relies on sequential PCR-based methods, which are labour-intensive and lack precision.
View Article and Find Full Text PDF