Publications by authors named "Anna Benet-Pages"

Hereditary adult-onset ataxias are a heterogeneous group of phenotypically overlapping conditions, often caused by pathogenic expansions of short tandem repeats. Currently, 18 repeat disorders with a core phenotype of adult-onset ataxia are known. Diagnosis typically relies on sequential PCR-based methods, which are labour-intensive and lack precision.

View Article and Find Full Text PDF

Purpose: Variants of uncertain significance (VUS) are considered one of the most significant impediments to the translation of genetic test results into precise clinical recommendations. The 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) classification guidelines established a general framework for the assessment and classification of genetic variants; yet, gene-specific specifications are needed to enable better variant classification to reduce the number of VUS. The process of gene-specific adaptations of the ACMG/AMP codes is led and accompanied by ClinGen and implemented by Variant Curation Expert Panels (VCEP).

View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is a widely utilized web-based tool for visualization and analysis of genomic data, encompassing over 4000 assemblies from diverse organisms.

View Article and Find Full Text PDF

The rapid and dynamic implementation of Next-Generation Sequencing (NGS)-based assays has revolutionized genetic testing, and in the near future, nearly all molecular alterations of the human genome will be diagnosable via massive parallel sequencing. While this progress will further corroborate the central role of human genetics in the multidisciplinary management of patients with genetic disorders, it must be accompanied by quality assurance measures in order to allow the safe and optimal use of knowledge ascertained from genome diagnostics. To achieve this, several valuable tools and guidelines have been developed to support the quality of genome diagnostics.

View Article and Find Full Text PDF

Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution.

View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide.

View Article and Find Full Text PDF

Background: The importance of early diagnosis of 5q-Spinal muscular atrophy (5q-SMA) has heightened as early intervention can significantly improve clinical outcomes. In 96% of cases, 5q-SMA is caused by a homozygous deletion of SMN1. Around 4 % of patients carry a SMN1 deletion and a single-nucleotide variant (SNV) on the other allele.

View Article and Find Full Text PDF

The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year.

View Article and Find Full Text PDF

Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity.

View Article and Find Full Text PDF

Background: Analysis of circulating free DNA (cfDNA) is a promising tool for personalized management of colorectal cancer (CRC) patients. Untargeted cfDNA analysis using whole-genome sequencing (WGS) does not need a priori knowledge of the patient´s mutation profile.

Methods: Here we established LIquid biopsy Fragmentation, Epigenetic signature and Copy Number Alteration analysis (LIFE-CNA) using WGS with ~ 6× coverage for detection of circulating tumor DNA (ctDNA) in CRC patients as a marker for CRC detection and monitoring.

View Article and Find Full Text PDF

The UCSC Genome Browser has been an important tool for genomics and clinical genetics since the sequence of the human genome was first released in 2000. As it has grown in scope to display more types of data it has also grown more complicated. The data, which are dispersed at many locations worldwide, are collected into one view on the Browser, where the graphical interface presents the data in one location.

View Article and Find Full Text PDF

The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations.

View Article and Find Full Text PDF

Background: Analysis of circulating tumor DNA (ctDNA) in plasma is a powerful approach to guide decisions in personalized cancer treatment. Given the low concentration of ctDNA in plasma, highly sensitive methods are required to reliably identify clinically relevant variants.

Methods: We evaluated the suitability of 5 droplet digital PCR (ddPCR) assays targeting KRAS, BRAF, and EGFR variants for ctDNA analysis in clinical use.

View Article and Find Full Text PDF

Background: Molecular autopsy represents an efficient tool to save the diagnosis in up to one-third of sudden unexplained death (SUD). A defined gene panel is usually used for the examination. Alternatively, it is possible to carry out a comprehensive genetic assessment (whole exome sequencing, WES), which also identifies rare, previously unknown variants.

View Article and Find Full Text PDF

For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community.

View Article and Find Full Text PDF

As comprehensive sequencing technologies gain widespread use, questions about so-called secondary findings (SF) require urgent consideration. The American College of Medical Genetics and Genomics has recommended to report SF in 59 genes (ACMG SF v2.0) including four actionable genes associated with inherited primary arrhythmia syndromes (IPAS) such as catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, and Brugada syndrome.

View Article and Find Full Text PDF

Routine diagnostics for colorectal cancer patients suspected of having Lynch-Syndrome (LS) currently uses Next-Generation-Sequencing (NGS) of targeted regions within the DNA mismatch repair (MMR) genes. This analysis can reliably detect nucleotide alterations and copy-number variations (CNVs); however, CNV-neutral rearrangements comprising gene inversions or large intronic insertions remain undetected because their breakpoints are usually not covered. As several founder mutations exist for LS, we established PCR-based screening methods for five known rearrangements in MLH1, MSH2, or PMS2, and investigated their prevalence in 98 German patients with suspicion of LS without a causative germline variant or CNV detectable in the four MMR genes.

View Article and Find Full Text PDF

Lynch syndrome (LS) is caused by germline defects in DNA mismatch repair (MMR) pathway, resulting in microsatellite instability (MSI-H) and loss of immunohistochemical staining (IHC) of the respective protein in tumor tissue. However, not in all clinically suspected LS patients with MSI-H tumors and IHC-loss, causative germline alterations in the MMR genes can be detected. Here, we investigated 128 of these patients to possibly define new pathomechanisms.

View Article and Find Full Text PDF

Compound heterozygosity of a previously described pathogenic variant and a second novel nucleotide substitution (NR_023343.1:n.116A>C) affecting a highly conserved nucleotide in the noncoding gene could be identified in a patient with overlapping features of Roifman Syndrome.

View Article and Find Full Text PDF

Background: The diagnosis of mitochondrial disorders is challenging because of the clinical variability and genetic heterogeneity of these conditions. Next-Generation Sequencing (NGS) technology offers a robust high-throughput platform for nuclear and mitochondrial DNA (mtDNA) analyses.

Method: We developed a custom Agilent SureSelect Mitochondrial and Nuclear Disease Panel (Mito-aND-Panel) capture kit that allows parallel enrichment for subsequent NGS-based sequence analysis of nuclear mitochondrial disease-related genes and the complete mtDNA genome.

View Article and Find Full Text PDF

Background: Germline defects in , , and predisposing for Lynch syndrome (LS) are mainly based on sequence changes, whereas a constitutional epimutation of (CEM) is exceptionally rare. This abnormal promoter methylation is not hereditary when arising de novo, whereas a stably heritable and variant-induced CEM was described for one single allele. We searched for promoter variants causing a germline or somatic methylation induction or transcriptional repression.

View Article and Find Full Text PDF

Lynch Syndrome (LS) is the most common dominantly inherited colorectal cancer (CRC) predisposition and is caused by a heterozygous germline defect in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. High microsatellite instability (MSI-H) and loss of MMR protein expression in tumours reflecting a defective MMR are indicators for LS, as well as a positive family history of early onset CRC. MSH2 and MSH6 form a major functional heterodimer, and MSH3 is an alternative binding partner for MSH2.

View Article and Find Full Text PDF

The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription). In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC) predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense), all absent or very rare in the ExAC database.

View Article and Find Full Text PDF

Background: Retinitis pigmentosa in combination with hearing loss can be a feature of different Mendelian disorders. We describe a novel syndrome caused by biallelic mutations in the 'exosome component 2' (EXOSC2) gene.

Methods: Clinical ascertainment of three similar affected patients followed by whole exome sequencing.

View Article and Find Full Text PDF

Mutations in the DARS2 gene are known to cause leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL), a rare autosomal recessive neurological disorder. It was originally described as juvenile-onset slowly progressive ataxia and spasticity, but recent reports suggest a broader clinical spectrum. Most patients were found to carry compound heterozygous DARS2 mutations, and only very few patients with homozygous mutations have been described so far.

View Article and Find Full Text PDF