A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Small Zoom Mismatch Adjustment Method for Dual-Band Fusion Imaging System Based on Edge-Gradient Normalized Mutual Information. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, automatic optical zoom setups are being extensively explored for their applications in search, detection, recognition, and tracking. In visible and infrared fusion imaging systems with continuous zoom, dual-channel multi-sensor field-of-view matching control in the process of synchronous continuous zoom can be achieved by pre-calibration. However, mechanical and transmission errors of the zoom mechanism produce a small mismatch in the field of view after co-zooming, degrading the sharpness of the fusion image. Therefore, a dynamic small-mismatch detection method is necessary. This paper presents the use of edge-gradient normalized mutual information as an evaluation function of multi-sensor field-of-view matching similarity to guide the small zoom of the visible lens after continuous co-zoom and ultimately reduce the field-of-view mismatch. In addition, we demonstrate the use of the improved hill-climbing search algorithm for autozoom to obtain the maximum value of the evaluation function. Consequently, the results validate the correctness and effectiveness of the proposed method under small changes in the field of view. Therefore, this study is expected to contribute to the improvement of visible and infrared fusion imaging systems with continuous zoom, thereby enhancing the overall working of helicopter electro-optical pods, and early warning equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144247PMC
http://dx.doi.org/10.3390/s23083922DOI Listing

Publication Analysis

Top Keywords

fusion imaging
12
continuous zoom
12
small zoom
8
edge-gradient normalized
8
normalized mutual
8
visible infrared
8
infrared fusion
8
imaging systems
8
systems continuous
8
multi-sensor field-of-view
8

Similar Publications