Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study focuses on a novel humidity sensor composed of graphene-oxide (GO)-supported MoTe nanosheets. Conductive Ag electrodes were formed on PET substrates by inkjet printing. A thin film of GO-MoTe was deposited on the Ag electrode used for adsorbing humidity. The experiment's results demonstrate that MoTe are attached to GO nanosheets uniformly and tightly. The capacitive output of the sensors with various ratios of GO/MoTe has been tested for different levels of humidity (11.3-97.3%RH) at room temperature (25 °C). As a consequence, the obtained hybrid film exhibits superior sensitivity (94.12 pF/%RH). The structural integrity and interaction of different components were discussed to afford the prominent humidity sensitivity performance. Under the bending condition, the output curve of the sensor has no obvious fluctuation. This work provides a low-cost way to build flexible humidity sensors with high-performance in environmental monitoring and healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142822PMC
http://dx.doi.org/10.3390/nano13081309DOI Listing

Publication Analysis

Top Keywords

flexible humidity
8
humidity sensor
8
mote nanosheets
8
humidity
6
printable flexible
4
sensor based
4
based graphene
4
graphene -oxide-supported
4
-oxide-supported mote
4
nanosheets multifunctional
4

Similar Publications

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

Experimental and Simulated Analysis of Polymer Hole Transport Layers and the Electrical and Optical Effects on Perovskite Solar Cells.

ACS Appl Mater Interfaces

September 2025

Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, León, Guanajuato 37150, Mexico.

This study presents a systematic analysis of the impact of polymer hole transport layers (HTLs) in inverted MAPbI perovskite solar cells (PSCs). Devices were fully fabricated under regular atmospheric conditions (≈40% humidity) and low temperature (100 °C) by using Field's Metal (FM) as an alternative top electrode. The widely known π-conjugated polymers P3HT, PTB7-Th, PBDB-T, and MEH-PPV were used as HTLs, and all of them show suitable energy alignment to MAPbI, offering good moisture stability, solution processability, low cost, and attractiveness for large area and flexible PSCs.

View Article and Find Full Text PDF

The development of flexible gas sensors is of growing interest in wearable electronics. However, developing a gas sensor with low operating temperature, high sensitivity, and rapid response remains a huge challenge. Herein, we first develop a polyacrylamide-sodium acrylate-sodium citrate (PAM-Na-SC) hydrogel electrolyte, and design a hydrogel-based nitrogen dioxide (NO) gas sensor enabled by zinc-air batteries (ZABs).

View Article and Find Full Text PDF