A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Temperature and Load on Tribological Behavior in Laser-Cladded FeCrSiNiCoC Coatings. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The FeCrSiNiCoC coatings with fine macroscopic morphology and uniform microstructure were made on 1Cr11Ni heat resistant steel substrate by a laser-based cladding technique. The coating consists of dendritic γ-Fe and eutectic Fe-Cr intermetallic with an average microhardness of 467 HV ± 22.6 HV. At the load of 200 N, the average friction coefficient of the coating dropped as temperature increased, while the wear rate decreased and then increased. The wear mechanism of the coating changed from abrasive wear, adhesive wear and oxidative wear to oxidative wear and three-body wear. Apart from an elevation in wear rate with increasing load, the mean friction coefficient of the coating hardly changed at 500 °C. Due to the coating's transition from adhesive wear and oxidative wear to three-body wear and abrasive wear, the underlying wear mechanism also shifted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141079PMC
http://dx.doi.org/10.3390/ma16083263DOI Listing

Publication Analysis

Top Keywords

wear
13
wear oxidative
12
oxidative wear
12
fecrsinicoc coatings
8
friction coefficient
8
coefficient coating
8
increased wear
8
wear rate
8
wear mechanism
8
coating changed
8

Similar Publications