Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The FeCrSiNiCoC coatings with fine macroscopic morphology and uniform microstructure were made on 1Cr11Ni heat resistant steel substrate by a laser-based cladding technique. The coating consists of dendritic γ-Fe and eutectic Fe-Cr intermetallic with an average microhardness of 467 HV ± 22.6 HV. At the load of 200 N, the average friction coefficient of the coating dropped as temperature increased, while the wear rate decreased and then increased. The wear mechanism of the coating changed from abrasive wear, adhesive wear and oxidative wear to oxidative wear and three-body wear. Apart from an elevation in wear rate with increasing load, the mean friction coefficient of the coating hardly changed at 500 °C. Due to the coating's transition from adhesive wear and oxidative wear to three-body wear and abrasive wear, the underlying wear mechanism also shifted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141079 | PMC |
http://dx.doi.org/10.3390/ma16083263 | DOI Listing |