Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The major challenge of high-temperature shape memory alloys (SMAs) is the collocation of phase transition temperatures (TTs: M, M, A, A) with the mechanical properties required for application. Previous research has shown that the addition of Hf and Zr into NiTi shape memory alloys (SMAs) increases TTs. Modulating the ratio of Hf and Zr can control the phase transformation temperature, and applying thermal treatments can also achieve the same goal. However, the influence of thermal treatments and precipitates on mechanical properties has not been widely discussed in previous studies. In this study, we prepared two different kinds of shape memory alloys and analyzed their phase transformation temperatures after homogenization. Homogenization successfully eliminated dendrites and inter-dendrites in the as-cast states, resulting in a reduction in the phase transformation temperatures. XRD patterns indicated the presence of B2 peaks in the as-homogenized states, demonstrating a decrease in phase transformation temperatures. Mechanical properties, such as elongation and hardness, were improved due to the uniform microstructures achieved after homogenization. Moreover, we discovered that different additions of Hf and Zr resulted in distinct properties. Alloys with lower Hf and Zr had lower phase transformation temperatures, followed by higher fracture stress and elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143743PMC
http://dx.doi.org/10.3390/ma16083212DOI Listing

Publication Analysis

Top Keywords

transformation temperatures
20
phase transformation
20
mechanical properties
16
shape memory
16
memory alloys
16
temperatures mechanical
8
alloys smas
8
thermal treatments
8
temperatures
6
phase
6

Similar Publications

l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.

View Article and Find Full Text PDF

Herein, it is reported the synthesis of a niobium-based metal-organic framework (MOF), [Nb-(Bez-(COO))] , for the extraction of caffeine from surface waters. The material was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis, which confirmed the coordination between the ligand (1,4-benzenodicarboxylic, (Bez-(COO))) and niobium (Nb) with a morphology composed of hexagonal rods, high crystallinity, and a surface area of 94.7 m g.

View Article and Find Full Text PDF

For a long time, it was believed that the monoclinic potassium dihydrogen phosphate (KDP) crystal could not grow directly in solution, unlike its deuterated isomer DKDP. This perception was overturned when the crystal was observed to crystallize in highly supersaturated aqueous solutions. Till now, the phase stability of the monoclinic KDP remains unknown.

View Article and Find Full Text PDF

The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.

View Article and Find Full Text PDF

Hybrid coatings composed of crystalline monetite (CaHPO) and kefir-derived Dextran were synthesized on Ti6Al4V substrates using a low-temperature sol-gel-assisted route (≤80 °C), enabling biopolymer integration without thermal degradation. X-ray diffraction (XRD) confirmed the formation of triclinic monetite nanocrystals (∼152 nm), while Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses verified the uniform incorporation of Dextran, particularly in the 4 wt % formulation, which yielded compact, homogeneous surfaces. Electrochemical evaluations in Fusayama artificial saliva revealed a substantial enhancement in corrosion resistance, with the open-circuit potential shifting from -0.

View Article and Find Full Text PDF