98%
921
2 minutes
20
Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (r = 0.41, = 0.11), a linear relationship was observed after 50 years (r = 0.95, < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138488 | PMC |
http://dx.doi.org/10.3390/ijms24087148 | DOI Listing |
Leukemia
September 2025
Cleveland Clinic Research, Cleveland, OH, USA.
Hematopoietic malignancies (HM) represent the most common form of pediatric cancer with lymphoid malignancies being the predominant subtype in kids. The majority of lymphoid malignancies are proposed to occur sporadically with environmental, infectious and inflammatory triggers impacting oncogenesis in ways that are not yet fully understood. With the increased adoption of germline genetic testing in children with cancer, genetic predisposition to lymphoid malignancies is now recognized as an important aspect of clinical care and research.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
University of Texas Medical Branch, Galveston, Texas 77555, United States.
Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China; The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China. Electronic address: kexixian@z
Chemotherapy resistance in lung adenocarcinoma (LUAD) limits clinical efficacy. In this study, we first established circ_IGF2BP1 knockdown models in LUAD cells (A549 and H1299). Using dual-luciferase reporter assays, functional analyses, and miR-885-3p rescue experiments, we demonstrated that circ_IGF2BP1 promotes LUAD cell proliferation, migration, and invasion by directly targeting miR-885-3p.
View Article and Find Full Text PDF