98%
921
2 minutes
20
Background And Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy.
Methods And Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (, , and ) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring- mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM.
Conclusions: To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465332 | PMC |
http://dx.doi.org/10.15283/ijsc22158 | DOI Listing |
J Funct Biomater
April 2025
IIIrd Department-Oral Rehabilitation, Faculty of Dentistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania.
Background: Sinus-lift (SL) is a pre-prosthetic procedure with the objective of increasing bone height to achieve implant insertion primary stability in implant-supported prostheses. The biomechanical properties of SL augmentation materials are influenced by their origin, manufacture, bioactive substances addition, receiver, and surgical procedure. This systematic review provides insights into state-of-the-art SL biomaterials, focusing on autologous bone grafting as the gold standard.
View Article and Find Full Text PDFBiosens Bioelectron
May 2025
Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheo
This study introduces a beta-cyclodextrin/reduced graphene oxide/indium tin oxide (β-CD/rGO/ITO) microelectrode platform for the real-time, non-invasive, and label-free detection of N-acetylneuraminic acid (Neu5Ac) on red blood cell (RBC) surfaces. By leveraging advances in CRISPR-Cas9 technology, genetically modified pig-derived RBCs with reduced immunogenicity have been developed for xenotransfusion applications. However, elevated Neu5Ac expression in some modified RBCs complicates immunological assessment.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
Decellularized scaffolds retain the main bioactive substances of the extracellular matrix, which can better promote cell proliferation and matrix reconstruction at the defect site, and have great potential for morphological and functional restoration in patients with tissue defects. Due to the safety of the material source of allogeneic decellularized scaffolds, there is a great limitation in their clinical application, so the preparation and evaluation of xenodermal acellular scaffolds have attracted much attention. In terms of skin tissue structure and function, porcine skin has a high degree of similarity to human skin and has the advantages of sufficient quantity and no ethical issues.
View Article and Find Full Text PDFSci Rep
November 2023
Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain.
Endothelial dysfunction is a leading cause of corneal blindness in developed countries and the only available treatment is the endothelial transplantation. However, the limited availability of suitable donors remains a significant challenge, driving the exploration of alternative regenerative therapies. Advanced Therapy Medicinal Products show promise but must adhere to strict regulations that prohibit the use of animal-derived substances.
View Article and Find Full Text PDFInt J Stem Cells
August 2023
Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea.
Background And Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy.
View Article and Find Full Text PDF