Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mismatch repair (MMR) deficiency has been linked to thiopurine resistance and hypermutation in relapsed acute lymphoblastic leukemia (ALL). However, the repair mechanism of thiopurine-induced DNA damage in the absence of MMR remains unclear. Here, we provide evidence that DNA polymerase β (POLB) of base excision repair (BER) pathway plays a critical role in the survival and thiopurine resistance of MMR-deficient ALL cells. In these aggressive resistant ALL cells, POLB depletion and its inhibitor oleanolic acid (OA) treatment result in synthetic lethality with MMR deficiency through increased cellular apurinic/apyrimidinic (AP) sites, DNA strand breaks and apoptosis. POLB depletion increases thiopurine sensitivities of resistant cells, and OA synergizes with thiopurine to kill these cells in ALL cell lines, patient-derived xenograft (PDX) cells and xenograft mouse models. Our findings suggest BER and POLB's roles in the process of repairing thiopurine-induced DNA damage in MMR-deficient ALL cells, and implicate their potentials as therapeutic targets against aggressive ALL progression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-023-01902-3DOI Listing

Publication Analysis

Top Keywords

dna polymerase
8
synthetic lethality
8
mismatch repair
8
acute lymphoblastic
8
lymphoblastic leukemia
8
mmr deficiency
8
thiopurine resistance
8
thiopurine-induced dna
8
dna damage
8
mmr-deficient cells
8

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

A simple protocol to improve touch DNA analysis using direct STR amplification.

Sci Justice

September 2025

Department of Chemistry and Forensic Science, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, United States. Electronic address:

Traditionally, when processing DNA samples, a multiple-step procedure is followed; after a sample has been collected, DNA is then extracted and quantified before a profile is generated. During the process, valuable DNA can be lost and/or consumed. When processing reference samples, where DNA is usually in abundance, DNA loss may not be a concern for the analysts.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

Amplicon sequencing is a popular method for understanding the diversity of bacterial communities in samples containing multiple organisms as exemplified by 16S rRNA sequencing. Another application of amplicon sequencing includes multiplexing both primer sets and samples, allowing sequencing of multiple targets in multiple samples in the same sequencing run. Multiple tools exist to process the amplicon sequencing data produced via the short-read Illumina platform, but there are fewer options for long-read Oxford Nanopore Technologies (ONT) sequencing, or for processing data from environmental surveillance or other sources with many different organisms.

View Article and Find Full Text PDF