Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aplastic anemia (AA) is a potentially fatal bone marrow failure syndrome characterized by a paucity of hematopoietic stem cells and progenitor cells with varying degrees of cytopenia and fatty infiltration of the bone marrow space. Recent advances in genomics have uncovered a link between somatic mutations and myeloid cancer in AA patients. At present, the impact of these mutations on AA patients remains uncertain. We retrospectively investigated 279 AA patients and 174 patients with myelodysplastic syndromes (MDS) and performed targeted sequencing of 22 genes on their bone marrow cells using next-generation sequencing (NGS). Associations of somatic mutations with prognostic relevance and response to treatment were analyzed. Of 279 AA patients, 25 (9.0%) patients had somatic mutations, and 20 (7.2%) patients had one mutation. The most frequently mutated genes were ASXL1(3.2% of the patients), DNMT3A (1.8%) and TET2 (1.8%). In the MDS group, somatic mutations were detected in 120 of 174 (69.0%) patients, and 81 patients (46.6%) had more than one mutation. The most frequently mutated genes were U2AF1 (24.7% of the patients), ASXL1 (18.4%) and TP53 (13.2%). Compared with MDS patients, AA patients had a significantly lower frequency of somatic mutations and mostly one mutation. Similarly, the median variant allele frequency was lower in AA patients than in MDS patients (6.9% vs. 28.4%). The overall response of 3 and 6 months in the somatic mutation (SM) group was 37.5% and 66.7%, respectively. Moreover, there was no significant difference compared with the no somatic mutation (N-SM) group. During the 2-years follow-up period, four (20%) deaths occurred in the SM group and 40 (18.1%) in the N-SM group, with no significant difference in overall survival and event-free survival between the two groups. Our data indicated that myeloid tumor-associated somatic mutations in AA patients were detected in only a minority of patients by NGS. AA and MDS patients had different gene mutation patterns. The somatic mutations in patients with AA were characterized by lower mutation frequency, mostly one mutation, and lower median allelic burden of mutations than MDS. Somatic mutations were a common finding in the elderly, and the frequency of mutations increases with age. The platelet count affected the treatment response at 3 months, and ferritin level affected the outcome at 6 months, while somatic mutations were not associated with treatment response or long-term survival. However, our cohort of patients with the mutation was small; this result needs to be further confirmed with large patient sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725342PMC
http://dx.doi.org/10.1007/s10238-023-01067-4DOI Listing

Publication Analysis

Top Keywords

somatic mutations
40
patients
20
mutations
13
somatic
12
bone marrow
12
mutations patients
12
mds patients
12
mutation
9
aplastic anemia
8
279 patients
8

Similar Publications

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

T-cell receptors (TCRs) recognize antigens derived from fragments of somatically expressed proteins that are degraded by the proteasome and presented by specific human leukocyte antigen (HLA) molecules. Recent therapeutic advances using the TCR as a tumor-targeting moiety have focused attention on loss of heterozygosity (LOH) as a potential resistance mechanism. Allele-specific LOH, rather than allele-agnostic, is particularly pertinent, but rarely evaluated.

View Article and Find Full Text PDF

Discriminatory power of the Precision ID GlobalFiler™ NGS STR panel v2 in monozygotic twins for forensic applications.

Sci Justice

September 2025

Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil. Electronic address:

Short Tandem Repeats (STRs) are the standard technique used in forensic genetics for individual identification due to their high polymorphism and robustness. Although Capillary Electrophoresis (CE) enables the analysis of many STRs, Next-Generation Sequencing (NGS) offers enhanced resolution and the ability to detect STRs' isoalleles and their flanking regions, enhancing the discrimination power of this analysis. Despite the fact that STR kits for NGS are well standardized for evaluating forensic samples, there is no data on their effectiveness in differentiating monozygotic (MZ) twins, which are indistinguishable by CE.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

Somatic mitochondrial DNA (mtDNA) mutations are frequently observed in tumors, yet their role in pediatric cancers remains poorly understood. The heteroplasmic nature of mtDNA-where mutant and wild-type mtDNA coexist-complicates efforts to define its contribution to disease progression. In this study, bulk whole-genome sequencing of 637 matched tumor-normal samples from the Pediatric Cancer Genome Project revealed an enrichment of functionally impactful mtDNA variants in specific pediatric leukemia subtypes.

View Article and Find Full Text PDF