A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling multifunction of low-temperature Daqu in simultaneous saccharification and fermentation of Chinese light aroma type liquor. | LitMetric

Unraveling multifunction of low-temperature Daqu in simultaneous saccharification and fermentation of Chinese light aroma type liquor.

Int J Food Microbiol

Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chinese liquor is produced by a representative simultaneous saccharification and fermentation process. Daqu, as a starter of Chinese liquor fermentation, affects both saccharification and fermentation. However, it is still unclear how Daqu contributed to the simultaneous saccharification and fermentation process. Here, using Chinese light aroma type liquor as a case, we identified low-temperature Daqu-originated enzymes and microorganisms that contributed to the simultaneous saccharification and fermentation using metaproteomic analysis combined with amplicon sequencing analysis. α-Amylase and glucoamylase accounted for 95 % of total saccharifying enzymes and were identified as key saccharifying enzymes. Lichtheimia was the key producer of these two enzymes (> 90 %) in low-temperature Daqu. Daqu contributed 90 % α-amylase and 99 % glucoamylase to the initial liquor fermentation. These two enzymes decreased by 35 % and 49 % until day 15 in liquor fermentation. In addition, Daqu contributed key microbial genera (91 % Saccharomyces, 6.5 % Companilactobacillus) and key enzymes (37 % alcohol dehydrogenase, 40 % lactic acid dehydrogenase, 56 % aldehyde dehydrogenase) related with formations of ethanol, lactic acid and flavour compounds to the initial liquor fermentation. The average relative abundances of these fermentation-related key microorganisms and enzymes increased by 2.78 times and 1.29 times till day 15 in liquor fermentation, respectively. It indicated that Daqu provided saccharifying enzymes for starch hydrolysis, and provided both enzymes and microorganisms associated with formations of ethanol, lactic acid and flavour compounds for liquor fermentation. This work illustrated the multifunction of low-temperature Daqu in the simultaneous saccharification and fermentation of Chinese light aroma type liquor. It would facilitate improving liquor fermentation by producing high-quality Daqu.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2023.110202DOI Listing

Publication Analysis

Top Keywords

liquor fermentation
28
saccharification fermentation
24
simultaneous saccharification
20
fermentation
13
low-temperature daqu
12
chinese light
12
light aroma
12
aroma type
12
type liquor
12
daqu contributed
12

Similar Publications