Insight into the composite assembly process, nanofibril structure and stability of undenatured type II collagen in the presence of different types of nanocelluloses.

Int J Biol Macromol

Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Four types of nanocelluloses (CNs), including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), cationic etherified nanocellulose (CCNF) and TEMPO-oxidized nanocellulose (TOCNF), were incorporated into the assembly process of undenatured type II collagen (UC-II). In the presence of CNs, the kinetics of UC-II composite assembly slightly fluctuated and the magnitude of UC-II assembly increased (from 59.93 to 66.83-85.06 %). CNC and CNF disrupted the triple helix structure of UC-II while CCNF and TOCNF had weak impact on it. Hydrogen bonding and hydrophobic interactions were dominant driving forces of UC-II/CNs, and electrostatic interactions were also involved in the fabrication of UC-II/CCNF and UC-II/TOCNF. UC-II/CNs exhibited distinct nanostructures due to the differences in shape, level, and surface group of CNs. CCNF and TOCNF contributed to the enhanced physical stability due to the increased surface charge. In addition, the thermal stability and rheological properties of UC-II/CNs were also improved. The composite assembly process, nanofibril structure and stability of UC-II in the presence of different types and levels of CNs, which was useful to develop the novel composite nanofibrils for the application in functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124521DOI Listing

Publication Analysis

Top Keywords

composite assembly
12
assembly process
12
process nanofibril
8
nanofibril structure
8
structure stability
8
undenatured type
8
type collagen
8
presence types
8
types nanocelluloses
8
uc-ii presence
8

Similar Publications

Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi distribution responds to ecological damage characteristics in antimony mining ecosystems.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.

The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

Breaking the reproducibility barrier with standardized protocols for plant-microbiome research.

PLoS Biol

September 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.

View Article and Find Full Text PDF

The increasing concern over environmental pollution from brake dust and the adverse impacts of conventional brake pad materials, such as metallic, semi-metallic, and ceramic composites, has prompted the exploration of more sustainable alternatives. Traditional brake pads release harmful non-exhaust emissions that contribute to air pollution and wear down quickly, posing both environmental and operational challenges. This study investigates the development and performance evaluation of polymer friction composites enhanced with natural friction modifiers sourced from agricultural waste materials like walnut shell, coconut shell, and groundnut shell powders.

View Article and Find Full Text PDF