Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Because of the versatility of superhydrophobic materials, they have attracted a lot of attention even in power electronics, transportation, engineering, and other fields. The volume fraction of fluorinated silicon oxide nanoparticles in superhydrophobic materials is one of the most important factors. Increasing the volume fraction will decrease the stability between the coating and the hydrophobic surface. Especially, the flashover voltage of the coating gradually decreases from 10 to 35 vol.%. Meanwhile, the flashover voltage dispersion of the coating increases drastically after 30 vol.%. In order to improve the electrical properties of the superhydrophobic coating, self-assembly of surface energy differences strategy is proposed in this work. A binary filling phase of the coating is introduced by 2D boron nitride nanosheets and silicon oxide nanoparticles. Although Hexagonal boron nitride with high surface energy and low roughness, it will be spontaneously assembled and wrapped by silicon oxide nanoparticle based on surface energy differences, which forming a low surface energy filled phase. Experiment results prove that the flashover voltage of the superhydrophobic coating is optimized by the binary filling phase coating. This method offers new ideas for the selection of filling phase and application of superhydrophobic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200965 | DOI Listing |