A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Novel Anti-Flashover Superhydrophobic Coating with Self-Assembly Characteristic of Surface Energy Differences. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Because of the versatility of superhydrophobic materials, they have attracted a lot of attention even in power electronics, transportation, engineering, and other fields. The volume fraction of fluorinated silicon oxide nanoparticles in superhydrophobic materials is one of the most important factors. Increasing the volume fraction will decrease the stability between the coating and the hydrophobic surface. Especially, the flashover voltage of the coating gradually decreases from 10 to 35 vol.%. Meanwhile, the flashover voltage dispersion of the coating increases drastically after 30 vol.%. In order to improve the electrical properties of the superhydrophobic coating, self-assembly of surface energy differences strategy is proposed in this work. A binary filling phase of the coating is introduced by 2D boron nitride nanosheets and silicon oxide nanoparticles. Although Hexagonal boron nitride with high surface energy and low roughness, it will be spontaneously assembled and wrapped by silicon oxide nanoparticle based on surface energy differences, which forming a low surface energy filled phase. Experiment results prove that the flashover voltage of the superhydrophobic coating is optimized by the binary filling phase coating. This method offers new ideas for the selection of filling phase and application of superhydrophobic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200965DOI Listing

Publication Analysis

Top Keywords

surface energy
20
superhydrophobic coating
12
energy differences
12
superhydrophobic materials
12
silicon oxide
12
flashover voltage
12
filling phase
12
coating
8
coating self-assembly
8
volume fraction
8

Similar Publications