Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113392PMC
http://dx.doi.org/10.1038/s41467-023-37385-0DOI Listing

Publication Analysis

Top Keywords

kelp forests
24
ecosystem services
12
ecological economic
12
marine kelp
8
fisheries production
8
kelp
7
forests
6
services global
4
global marine
4
forests marine
4

Similar Publications

The sunflower star, Pycnopodia helianthoides, was a top benthic predator throughout its former range from Alaska to northern Mexico, until its populations were devastated starting in 2013 by a disease known as seastar wasting. The subsequent absence of sunflower stars from northern California waters was coincident with a dramatic ecological phase shift from healthy bull kelp forests (Nereocystis luetkeana) to barrens formed by purple sea urchins (Strongylocentrotus purpuratus), a prey of sunflower stars. Modeling suggests that restoration and resilience of kelp forests can be enhanced by the return of sunflower stars.

View Article and Find Full Text PDF

Potential blue carbon in the fringe of Southern European Kelp forests.

Sci Rep

August 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.

Blue Carbon encompasses the organic carbon sequestered and stored by coastal and marine ecosystems, including seaweed forests. This study aims to quantify the potential Blue Carbon storage and sequestration rates of subtidal kelp forests in Northern Portugal, focusing on the most dominant species Laminaria hyperborea and Saccorhiza polyschides. Through in-situ measurements of forest extension, biomass, growth, and carbon content, we determined that these kelp forests store approximately 16.

View Article and Find Full Text PDF

Kelp forests form some of the most productive areas on earth and are proposed to sequester carbon in the ocean, largely in the form of released dissolved organic carbon (DOC). Here we investigate the role of environmental, seasonal and age-related physiological gradients on the partitioning of net primary production (NPP) into DOC by the canopy forming giant kelp (Macrocystis pyrifera). Rates of DOC production were strongly influenced by an age-related decline in physiological condition (i.

View Article and Find Full Text PDF

Global warming is driving contraction of species' ranges through migration and mortality at their warm edge. However, for most species more subtle, sub-lethal changes in performance will be a more ubiquitous response to the Anthropocene. It has been suggested that reduction in body size will be a universal response to warming for cold-water species.

View Article and Find Full Text PDF

More than 10 years following the onset of the sea star wasting disease (SSWD) epidemic, affecting over 20 asteroid species from Mexico to Alaska, the causative agent has been elusive. SSWD killed billions of the most susceptible species, sunflower sea stars (Pycnopodia helianthoides), initiating a trophic cascade involving unchecked urchin population growth and the widespread loss of kelp forests. Identifying the causative agent underpins the development of recovery strategies.

View Article and Find Full Text PDF