Optimized OPEP Force Field for Simulation of Crowded Protein Solutions.

J Phys Chem B

Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 rue Pierre et Marie Curie, Paris, 75005, France.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150358PMC
http://dx.doi.org/10.1021/acs.jpcb.3c00253DOI Listing

Publication Analysis

Top Keywords

force field
12
protein solutions
12
dynamics crowded
8
protein
5
optimized opep
4
opep force
4
field simulation
4
crowded
4
simulation crowded
4
crowded protein
4

Similar Publications

The regulation of droplet dynamics based on external electric fields and bioinspired functional surfaces has widespread applications in various fields. However, research on the coupling of these two factors to enhance oil-water separation efficiency is urgently needed. In this study, laser-induced and solvent treatment techniques were coupled to assemble a micronano setal and bioinspired beetle elytra textured substrate with the lotus effect, A "top conductive, bottom insulating" Desert beetle elytra micronano tuft composite texture (DBE) biomimetic superhydrophobic surface was fabricated.

View Article and Find Full Text PDF

Regional changes in shear modulus of the biceps femoris long head following load application to the biceps femoris short head.

J Biomech

September 2025

Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan; Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan. Electronic address:

Understanding the mechanical behavior of the biceps femoris long head (BFlh) may be insightful due to its high susceptibility to strain injuries, particularly during high-speed running in sports, such as soccer and track and field. While prior research has focused on intrinsic muscle properties, emerging evidence suggests that the biceps femoris short head (BFsh) may influence BFlh tension. Thus, we examined the effects of BFsh load application on the tensile strength and regional shear modulus of the BFlh.

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

The recent observational evidence of deviations from the Lambda cold dark matter model points toward the presence of evolving dark energy. The simplest possibility consists of a cosmological scalar field φ, dubbed "quintessence," driving the accelerated expansion. We assess the evidence for the existence of such a scalar field.

View Article and Find Full Text PDF