98%
921
2 minutes
20
During the past two decades, our understanding of mechanochemical reactivity has advanced considerably. Nevertheless, an incomplete knowledge of structure-activity relationships and the principles that govern mechanochemical transformations limits molecular design. The experimental development of mechanophores has thus benefited from simple computational tools like CoGEF, from which quantitative metrics like rupture force can be extracted to estimate reactivity. Furan-maleimide (FM) and anthracene-maleimide (AM) Diels-Alder adducts are widely studied mechanophores that undergo retro-Diels-Alder reactions upon mechanical activation in polymers. Despite possessing significantly different thermal stability, similar rupture forces predicted by CoGEF calculations suggest that these compounds exhibit similar mechanochemical reactivity. Here, we directly probe the relative mechanochemical reactivity of FM and AM adducts through competitive activation experiments. Ultrasound-induced mechanochemical activation of bis-adduct mechanophores comprising covalently tethered FM and AM subunits reveals pronounced selectivity-as high as ∼13:1-for reaction of the FM adduct compared to the AM adduct. Computational models provide insight into the greater reactivity of the FM mechanophore, indicating a more efficient mechanochemical coupling for the FM adduct compared to the AM adduct. The methodology employed here to directly interrogate the relative reactivity of two different mechanophores using a tethered bis-adduct configuration may be useful for other systems where more common sonication-based approaches are limited by poor sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103189 | PMC |
http://dx.doi.org/10.1021/acspolymersau.2c00047 | DOI Listing |
Chem Sci
August 2025
Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
Mechanochemical reduction of β-diketiminate (BDI) barium iodide precursors with K/KI resulted in the first barium inverse sandwich complexes containing the benzene dianion in yields of up to 54%. This most challenging isolation of highly reactive (BDI)Ba-(CH)-Ba(BDI) complexes, completes the family of heavier benzene inverse sandwich complexes and allows for a comparison of trends in the series from Mg, Ca, Sr to Ba. Syntheses, stabilities, structures, electronic states and reactivities of the full range are compared.
View Article and Find Full Text PDFChem Sci
August 2025
Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University The Netherlands
Mechano-chemistry can depolymerize plastics to their monomers. The conversion of polyolefins, however, suffers from low chain cleavage rates and the low stability of radical intermediates. Therefore, insights into the degradation mechanism are crucial to obtain higher yields.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2025
Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
Deuterium labeling is extensively utilized across various scientific disciplines. The dehalogenative deuteration of organic halides offers a promising approach for achieving deuterium labeling. However, existing methods for dehalogenative deuteration primarily focus on sp-hybridized aryl halides, while sp-hybridized alkyl halides, especially bromides and chlorides, exhibit low reactivity and pose significant challenges for reduction.
View Article and Find Full Text PDFChem Sci
August 2025
Institute of Physical Chemistry, Heinrich Heine University Düsseldorf 40225 Germany
Besides long established thermal and photochemical activation of chemical reactivity, mechanical forces emerged as a further tool to drive reactions. Molecular motifs which undergo particular transformations under external force, so called mechanophores, are oftentimes small cyclic structures which can easily be activated due to their inherent ring strain. In the ring-opening of -substituted 4 π-electron mechanophores, the pulling force activates the Woodward-Hoffmann-forbidden disrotatory reaction, which can compete with the allowed conrotatory reaction.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Chemistry and Federal University of Santa Maria. Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
The spontaneous electrification of surfaces and interfaces is a widespread phenomenon that produces unexpected effects in chemical reactivity and mass charge transfer, revealed in abundant literature over the past twenty years. The pervasive presence of electrostatic charges originates from many sources, including friction, mechanochemical reactions, phase change, flexoelectricity, and others. Since fused deposition modeling undergoes most well-known electrification mechanisms, it would be not surprising that 3D-printed objects display large amounts of charge.
View Article and Find Full Text PDF