98%
921
2 minutes
20
Application of machine learning (ML) algorithms to spectroscopic data has a great potential for obtaining hidden correlations between structural information and spectral features. Here, we apply ML algorithms to theoretically simulated infrared (IR) spectra to establish the structure-spectrum correlations in zeolites. Two hundred thirty different types of zeolite frameworks were considered in the study whose theoretical IR spectra were used as the training ML set. A classification problem was solved to predict the presence or absence of possible tilings and secondary building units (SBUs). Several natural tilings and SBUs were also predicted with an accuracy above 89%. The set of continuous descriptors was also suggested, and the regression problem was also solved using the ExtraTrees algorithm. For the latter problem, additional IR spectra were computed for the structures with artificially modified cell parameters, expanding the database to 470 different spectra of zeolites. The resulting prediction quality above or close to 90% was obtained for the average Si-O distances, Si-O-Si angles, and volume of TO tetrahedra. The obtained results provide new possibilities for utilization of infrared spectra as a quantitative tool for characterization of zeolites
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155178 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.2c04395 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Keimyung University, Daegu 42601, Republic of Korea.
Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation.
View Article and Find Full Text PDFACS Nano
September 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).
View Article and Find Full Text PDFForensic Sci Int
September 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, São Paulo 14040-091, Brazil; Instituto Nacional de Ciência e Tecnologia - Ciências Forenses (INCT Forense), Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão P
New psychoactive substances (NPS) present significant challenges for law enforcement and public health due to their rapid emergence and structural diversity, often outpacing the development of traditional analytical methods. This review explores using computational chemistry, particularly density functional theory (DFT), to obtain infrared spectra. This combination to characterize NPS began in the 2010s and has gained momentum across all continents in recent years.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.
View Article and Find Full Text PDF