A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neural networks determination of material elastic constants and structures in nematic complex fluids. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supervised machine learning and artificial neural network approaches can allow for the determination of selected material parameters or structures from a measurable signal without knowing the exact mathematical relationship between them. Here, we demonstrate that material nematic elastic constants and the initial structural material configuration can be found using sequential neural networks applied to the transmmited time-dependent light intensity through the nematic liquid crystal (NLC) sample under crossed polarizers. Specifically, we simulate multiple times the relaxation of the NLC from a random (qeunched) initial state to the equilibirum for random values of elastic constants and, simultaneously, the transmittance of the sample for monochromatic polarized light. The obtained time-dependent light transmittances and the corresponding elastic constants form a training data set on which the neural network is trained, which allows for the determination of the elastic constants, as well as the initial state of the director. Finally, we demonstrate that the neural network trained on numerically generated examples can also be used to determine elastic constants from experimentally measured data, finding good agreement between experiments and neural network predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102156PMC
http://dx.doi.org/10.1038/s41598-023-33134-xDOI Listing

Publication Analysis

Top Keywords

elastic constants
24
neural network
16
neural networks
8
time-dependent light
8
initial state
8
network trained
8
neural
6
elastic
6
constants
6
networks determination
4

Similar Publications