Variation in body size drives spatial and temporal variation in lobster-urchin interaction strength.

J Anim Ecol

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross-taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size-scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster-urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size-scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size-relative to density-accounted for up to 87% of the spatio-temporal variation in interaction strength. However, general size-scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size-frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species-specific estimates for the scaling of interaction strength with body size, rather than general size-scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13918DOI Listing

Publication Analysis

Top Keywords

interaction strength
28
body size
24
general size-scaling
16
size-scaling relationships
16
size
10
spatial temporal
8
variation lobster-urchin
8
interaction
8
lobster-urchin interaction
8
strength
8

Similar Publications

Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.

View Article and Find Full Text PDF

In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF

Unveiling the Hierarchical Network of Sleep Quality Determinants: Linking Behavioral, Environmental, and Psychosocial Pathways.

Psychol Res Behav Manag

September 2025

Department of Internal Medicine, Shaoxing Second Hospital, Shaoxing City, Zhejiang Province, People's Republic of China.

Background: Sleep quality has emerged as a critical public health concern, yet our understanding of how multiple determinants interact to influence sleep outcomes remains limited. This study employed partial correlation network analysis to examine the hierarchical structure of sleep quality determinants among Chinese adults.

Methods: We investigated the interrelationships among nine key factors: daily activity rhythm, social interaction frequency, work-life balance, light exposure, physical activity level, time control perception, shift work, weekend catch-up sleep, and sleep quality using the extended Bayesian Information Criterion (EBIC) glasso model.

View Article and Find Full Text PDF

This study investigates the potential protective effects of eugenol on cecal ligation puncture (CLP) induced sepsis rat model. CLP was used to induce sepsis in rats and then treated with eugenol at doses of 25 and 50 mg/kg, i.p.

View Article and Find Full Text PDF