High-Contrast Bidirectional Optoelectronic Synapses based on 2D Molecular Crystal Heterojunctions for Motion Detection.

Adv Mater

National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light-stimulated optoelectronic synaptic devices are fundamental compositions of the neuromorphic vision system. However, there are still huge challenges to achieving both bidirectional synaptic behaviors under light stimuli and high performance. Herein, a bilayer 2D molecular crystal (2DMC) p-n heterojunction is developed to achieve high-performance bidirectional synaptic behaviors. The 2DMC heterojunction-based field effect transistor (FET) devices exhibit typical ambipolar properties and remarkable responsivity (R) of 3.58×10 A W under weak light as low as 0.008 mW cm . Excitatory and inhibitory synaptic behaviors are successfully realized by the same light stimuli under different gate voltages. Moreover, a superior contrast ratio (CR) of 1.53×10 is demonstrated by the ultrathin and high-quality 2DMC heterojunction, which transcends previous optoelectronic synapses and enables application for the motion detection of the pendulum. Furthermore, a motion detection network based on the device is developed to detect and recognize classic motion vehicles in road traffic with an accuracy exceeding 90%. This work provides an effective strategy for developing high-contrast bidirectional optoelectronic synapses and shows great potential in the intelligent bionic device and future artificial vision.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202301468DOI Listing

Publication Analysis

Top Keywords

optoelectronic synapses
12
motion detection
12
synaptic behaviors
12
high-contrast bidirectional
8
bidirectional optoelectronic
8
molecular crystal
8
bidirectional synaptic
8
light stimuli
8
optoelectronic
4
synapses based
4

Similar Publications

Anisotropic Optoelectronic Synapses in 2D NbGeTe for Direction-Programmable Neuromorphic Perception and Decision-Making.

Adv Mater

September 2025

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Neuromorphic computing presents a promising solution for the von Neumann bottleneck, enabling energy-efficient and intelligent sensing platforms. Although 2D materials are ideal for bioinspired neuromorphic devices, achieving multifunctional synaptic operations with simple configurations and linear weight updates remains challenging. Inspired by biological axons, the in-plane anisotropy of 2D NbGeTe is exploited to develop dual electronic-optical synaptic devices.

View Article and Find Full Text PDF

2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices.

View Article and Find Full Text PDF

Optogenetic neuromuscular actuation of a miniature electronic biohybrid robot.

Sci Robot

September 2025

Nick J. Holonyak Micro and Nanotechnology Laboratory, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Neuronal control of skeletal muscle function is ubiquitous across species for locomotion and doing work. In particular, emergent behaviors of neurons in biohybrid neuromuscular systems can advance bioinspired locomotion research. Although recent studies have demonstrated that chemical or optogenetic stimulation of neurons can control muscular actuation through the neuromuscular junction (NMJ), the correlation between neuronal activities and resulting modulation in the muscle responses is less understood, hindering the engineering of high-level functional biohybrid systems.

View Article and Find Full Text PDF

Neuromorphic computing addresses the von Neumann bottleneck by integrating memory and processing to emulate synaptic behavior. Artificial synapses enable this functionality through analog conductance modulation, low-power operation, and nanoscale integration. Halide perovskites with high ionic mobilities and solution processabilities have emerged as promising materials for such devices; however, inherent stochastic ion migration and thermal instability lead to asymmetric and nonlinear characteristics, ultimately impairing their learning and inference capabilities.

View Article and Find Full Text PDF

ZnO Quantum Dots@CsPbBr Poly-Heterocrystalline Film Enables High-Performance Floating-Gate Transistor Arrays for Edge Computing.

Adv Sci (Weinh)

August 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

Nonvolatile optoelectronic synapses motivated by the human eye can effectively function as convolutional kernels to preprocess images, demonstrating significant promise for edge computing. Among the optoelectronic synapses, the floating-gate photosensitive transistor (FG-PT) is particularly noteworthy due to its rapid response speed and excellent retention. Although some FG-PTs are reported, they still suffer from high operating voltages, low conductance ratios, and difficulties in array preparation.

View Article and Find Full Text PDF