Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Informative representation of molecules is a crucial prerequisite in AI-driven drug design and discovery. Pharmacophore information including functional groups and chemical reactions can indicate molecular properties, which have not been fully exploited by prior atom-based molecular graph representation. To obtain a more informative representation of molecules for better molecule property prediction, we propose the Pharmacophoric-constrained Heterogeneous Graph Transformer (PharmHGT). We design a pharmacophoric-constrained multi-views molecular representation graph, enabling PharmHGT to extract vital chemical information from functional substructures and chemical reactions. With a carefully designed pharmacophoric-constrained multi-view molecular representation graph, PharmHGT can learn more chemical information from molecular functional substructures and chemical reaction information. Extensive downstream experiments prove that PharmHGT achieves remarkably superior performance over the state-of-the-art models the performance of our model is up to 1.55% in ROC-AUC and 0.272 in RMSE higher than the best baseline model) on molecular properties prediction. The ablation study and case study show that our proposed molecular graph representation method and heterogeneous graph transformer model can better capture the pharmacophoric structure and chemical information features. Further visualization studies also indicated a better representation capacity achieved by our model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070395PMC
http://dx.doi.org/10.1038/s42004-023-00857-xDOI Listing

Publication Analysis

Top Keywords

heterogeneous graph
12
graph transformer
12
pharmacophoric-constrained heterogeneous
8
transformer model
8
molecular
8
model molecular
8
property prediction
8
informative representation
8
representation molecules
8
chemical reactions
8

Similar Publications

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

A time-frequency graph fusion framework for Major Depressive Disorder diagnosis in multi-site rsfMRI data.

J Affect Disord

September 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China. Electronic address:

Major Depressive Disorder (MDD) poses a significant global health threat, impairing individual functioning and increasing socioeconomic burden. Accurate diagnosis is crucial for improving treatment outcomes. This study proposes Time-Frequency Text-Attributed DeepWalk (TF-TADW), a framework for MDD classification using resting-state functional MRI data.

View Article and Find Full Text PDF

Drug-target interaction (DTI) identification is of great significance in drug development in various areas, such as drug repositioning and potential drug side effects. Although a great variety of computational methods have been proposed for DTI prediction, it is still a challenge in the face of sparsely correlated drugs or targets. To address the impact of data sparsity on the model, we propose a multi-view neighborhood-enhanced graph contrastive learning approach (MneGCL), which is based on graph clustering according to the adjacency relationship in various similarity networks between drugs or targets, to fully exploit the information of drugs and targets with few corrections.

View Article and Find Full Text PDF