A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A risk-predictive model for obstructive sleep apnea in patients with chronic obstructive pulmonary disease. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Obstructive sleep apnea syndrome (OSA) is increasingly reported in patients with chronic obstructive pulmonary disease (COPD). Our research aimed to analyze the clinical characteristics of patients with overlap syndrome (OS) and develop a nomogram for predicting OSA in patients with COPD.

Methods: We retroactively collected data on 330 patients with COPD treated at Wuhan Union Hospital (Wuhan, China) from March 2017 to March 2022. Multivariate logistic regression was used to select predictors applied to develop a simple nomogram. The area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA) were used to assess the value of the model.

Results: A total of 330 consecutive patients with COPD were enrolled in this study, with 96 patients (29.1%) confirmed with OSA. Patients were randomly divided into the training group (70%, = 230) and the validation group (30%, = 100). Age [odds ratio (OR): 1.062, 1.003-1.124], type 2 diabetes (OR: 3.166, 1.263-7.939), neck circumference (NC) (OR: 1.370, 1.098-1,709), modified Medical Research Council (mMRC) dyspnea scale (OR: 0.503, 0.325-0.777), Sleep Apnea Clinical Score (SACS) (OR: 1.083, 1.004-1.168), and C-reactive protein (CRP) (OR: 0.977, 0.962-0.993) were identified as valuable predictors used for developing a nomogram. The prediction model performed good discrimination [AUC: 0.928, 95% confidence interval (CI): 0.873-0.984] and calibration in the validation group. The DCA showed excellent clinical practicability.

Conclusion: We established a concise and practical nomogram that will benefit the advanced diagnosis of OSA in patients with COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065196PMC
http://dx.doi.org/10.3389/fnins.2023.1146424DOI Listing

Publication Analysis

Top Keywords

sleep apnea
12
osa patients
12
patients copd
12
patients
9
obstructive sleep
8
patients chronic
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
validation group
8

Similar Publications