Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since Curcumae Radix decoction pieces have multiple sources, it is difficult to distinguish depending on traditional cha-racters, and the mixed use of multi-source Curcumae Radix will affect its clinical efficacy. Heracles Neo ultra-fast gas phase electronic nose was used in this study to quickly identify and analyze the odor components of 40 batches of Curcumae Radix samples from Sichuan, Zhejiang, and Guangxi. Based on the odor fingerprints established for Curcumae Radix decoction pieces of multiple sources, the odor components was identified and analyzed, and the chromatographic peaks were processed and analyzed to establish a rapid identification method. Principal component analysis(PCA), discriminant factor analysis(DFA), and soft independent modeling cluster analysis(SIMCA) were constructed for verification. At the same time, one-way analysis of variance(ANOVA) combined with variable importance in projection(VIP) was employed to screen out the odor components with P<0.05 and VIP>1, and 13 odor components such as β-caryophyllene and limonene were hypothesized as the odor differential markers of Curcumae Radix decoction pieces of diffe-rent sources. The results showed that Heracles Neo ultra-fast gas phase electronic nose can well analyze the odor characteristics and rapidly and accurately discriminate Curcumae Radix decoction pieces of different sources. It can be applied to the quality control(e.g., online detection) in the production of Curcumae Radix decoction pieces. This study provides a new method and idea for the rapid identification and quality control of Curcumae Radix decoction pieces.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20221203.301DOI Listing

Publication Analysis

Top Keywords

curcumae radix
36
radix decoction
28
decoction pieces
28
odor components
16
heracles neo
12
neo ultra-fast
12
ultra-fast gas
12
gas phase
12
phase electronic
12
curcumae
9

Similar Publications

Anti-obesity effects of water-dispersible turmeric extract via gut barrier and metabolite modulation in high-fat diet-fed mice.

Food Res Int

November 2025

Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.

View Article and Find Full Text PDF

This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed.

View Article and Find Full Text PDF

Background: In China, L. is primarily cultivated for its underground parts-rhizomes (commonly known as turmeric) and tubers (Yujin), with the latter holding greater market value. However, current cultivation practices in China remain largely traditional, lacking scientific optimization in nutrient management, growth cycle alignment, or soil fertility strategies.

View Article and Find Full Text PDF

Introduction: Curcumae Rhizoma (Ezhu) and Curcumae Radix (Yujin) are both derived from Curcuma kwangsiensis (CK), an important species in the Zingiberaceae family. They have different clinical applications in traditional Chinese medicine (TCM): The rhizome is mainly used for antitumor treatments, whereas the radix is known for antidepressant and cholagogic effects, both officially listed in the Chinese Pharmacopoeia. However, non-medicinal parts such as the aerial portions and fibrous roots are sometimes mixed in, leading to confusion in clinical formulation use.

View Article and Find Full Text PDF