98%
921
2 minutes
20
Background: Circulating tumor DNA (ctDNA) has been becoming a novel convenient and noninvasive method for dynamically monitoring landscape of genomic information to guild personalized cancer treatment. In this study we comprehensively evaluated the additional value of plasma ctDNA to routine tissue next generation sequencing (NGS) of therapeutically targetable mutations in lung cancers.
Methods: The tumor tissues and peripheral blood samples from 423 cases of patients with lung cancer were subjected to NGS of mutations in oncodrivers (EGFR, ERBB2, ALK, ROS1, C-MET, KRAS, BRAF, RET, BRCA1 and BRCA2).
Results: One hundred and ninety-seven cases showed both plasma and tissue positive and 96 showed both negative. The concordance for tissue and blood detection was 69.27% (293/423). 83 (19.62%) cases showed positive by tissue NGS alone and 47 (11.11%) positive by plasma ctDNA alone. The sensitivity of tissue and plasma detection was 85.63%, and 74.62%, respectively. Plasma had lower detection and sensitivity than tissue, but plasma additionally detected some important mutations which were omitted by tissue NGS. Plasma plus tissue increased the detection rate of 66.19% by tissue alone to 77.30% as well as the sensitivity of 85.63-100%. Similar results were also observed when the cases were classified into subpopulations according to different stages (IV vs. III vs. I-II), grades (low vs. middle grade) and metastatic status (metastasis vs. no metastasis).
Conclusion: Plasma ctDNA shares a high concordance with tissue NGS, and plasma plus tissue enhances the detection rate and sensitivity by tissue alone, implying that the tissue and plasma detection should be mutually complementary in the clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063947 | PMC |
http://dx.doi.org/10.1186/s12885-023-10674-z | DOI Listing |
Cancer Treat Res Commun
September 2025
Department of Oncology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200 Aarhus N (DK), Denmark.
Purpose: We investigated whether EML4-ALK fusions and mutations in pre-treatment plasma ctDNA predicted time to treatment discontinuation (TTD) in ALK-positive non-small cell lung cancer (ALK+ NSCLC) patients initiating first-line alectinib and evaluated clinical characteristics influencing TTD.
Materials & Methods: 42 patients from five Danish public oncology departments with previously untreated, metastatic ALK+ NSCLC were included in the study. All patients received alectinib, a second-generation ALK inhibitor, as their first-line treatment.
Nat Med
September 2025
Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
CDK4/6 inhibitors (CDK4/6i) improve outcome in patients with advanced estrogen receptor-positive, HER2 breast cancer. The phase 3 SONIA trial compared the addition of CDK4/6i to first- versus second-line endocrine therapy for time to disease progression after second-line treatment (progression-free survival after two lines of treatment (PFS2)), as well as for secondary outcomes overall survival, PFS after one line of treatment (PFS1), health-related quality of life (HRQOL), toxicity and cost-effectiveness. No significant difference in PFS2 was observed; however, on an individual patient level this may be different.
View Article and Find Full Text PDFCancer Discov
September 2025
IFOM-ETS The AIRC Institute of Molecular Oncology, Milan, Italy.
Wang and colleagues showed that ctDNA can be detected in plasma up to 3 years prior to clinical diagnosis. The study highlights the need for ultrasensitive and multimodal approaches that integrate the detection of mutations and copy-number changes with advanced computational platforms to deliver effective early-detection strategies. See related article by Wang et al.
View Article and Find Full Text PDFWorld J Gastroenterol
August 2025
Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo 060-0061, Hokkaidō, Japan.
Background: Some patients with resectable or borderline resectable pancreatic ductal adenocarcinoma (PDAC) may have distant metastases, undetected on preoperative imaging or early recurrence, within 6 months after surgery. Occult metastases (OMs) must be accurately predicted to optimize multidisciplinary treatment.
Aim: To investigate the efficacy of circulating tumor DNA (ctDNA) in predicting OM.
Sci Rep
September 2025
Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
Biomarkers are increasingly used in cancer management, including lung cancer. The use of circulating tumour DNA (ctDNA) detection has attracted significant interest as a non-invasive, highly specific, and sensitive strategy. In this study, we developed and validated a methylation-specific droplet digital PCR (ddPCR) multiplex assay with five tumour-specific methylation markers identified by in silico analysis for lung cancer detection across various clinical settings.
View Article and Find Full Text PDF