A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metal Artifact Reduction Around Cervical Spine Implant Using Diffusion Tensor Imaging at 3T: A Phantom Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion MRI continues to play a key role in non-invasively assessing spinal cord integrity and pre-operative injury evaluation. However, post-operative Diffusion Tensor Imaging (DTI) acquisition of a patient with a metal implant results in severe geometric image distortion. A method has been proposed here to alleviate the technical challenges facing the acquisition of DTI in post-operative cases and to evaluate longitudinal therapeutics. The described technique is based on the combination of the reduced Field-Of-View (rFOV) strategy and the phase segmented acquisition scheme (rFOV-PS-EPI) for significantly mitigating metal-induced distortions. A custom-built phantom based on spine model with metal implant was used to collect high-resolution DTI data at 3 Tesla scanner using a home-grown diffusion MRI pulse sequence, rFOV-PS-EPI, single-shot (rFOV-SS-EPI), and the conventional full FOV techniques including SS-EPI, PS-EPI, and the readout-segmented (RS-EPI). This newly developed method provides high-resolution images with significant reduced metal-induced artifacts. In contrast to the other techniques, the rFOV-PS-EPI allows DTI measurement at the level of the metal hardware whereas the current rFOV-SS-EPI is useful when the metal is approximately 20 mm away. The developed approach enables high-resolution DTI in patients with metal implant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055636PMC
http://dx.doi.org/10.21203/rs.3.rs-2665952/v1DOI Listing

Publication Analysis

Top Keywords

metal implant
12
diffusion tensor
8
tensor imaging
8
diffusion mri
8
high-resolution dti
8
metal
6
dti
5
metal artifact
4
artifact reduction
4
reduction cervical
4

Similar Publications