98%
921
2 minutes
20
The ability of HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and ( )-MCG-IV-210 sensitize HIV-1 infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, ( )-MCG-IV-210 derivatives, based on the piperidine scaffold which engage the gp120 within the Phe43 cavity by targeting the highly-conserved Asp Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp , opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination HIV-1-infected cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055368 | PMC |
http://dx.doi.org/10.1101/2023.03.23.533923 | DOI Listing |
PLoS One
September 2025
Los Angeles General Medical Center, Los Angeles, California, United States of America.
Assessing the phagocytosis of microbes by macrophages is an important component of studies of novel immunotherapeutics, antimicrobial drugs, immune effectors, or any immunology related research. Here we define two protocols for measuring in vitro phagocytosis by RAW 246.7 cells - a photographic phagocytosis assay that allows optical measurement of bacterial cells inside of the RAW 246.
View Article and Find Full Text PDFmBio
September 2025
Centre de Recherche du CHUM, Montreal, Québec, Canada.
HIV-1-mediated CD4 downregulation is a well-known mechanism that protects infected cells from antibody-dependent cellular cytotoxicity (ADCC). While CD4 downregulation by HIV-1 Nef and Vpu proteins has been extensively studied, the contribution of the HIV-1 envelope glycoprotein (Env) in this mechanism is less understood. While Env is known to retain CD4 in the endoplasmic reticulum (ER) through its CD4-binding site (CD4bs), little is known about the mechanisms underlying this process.
View Article and Find Full Text PDFGynecol Oncol
September 2025
Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA. Electronic address:
Background: Cervical cancer is one of the most prevalent and deadly cancers worldwide. Here we demonstrate the preclinical pharmacology of Dato-DXd, a TROP2-targeting antibody-drug conjugate (ADC), against primary cervical cancer cell lines and xenografts.
Methods: Primary cervical cancer cell lines with differential TROP2 expression were identified by flow cytometry.
Immunogenetics
September 2025
Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
Immunoglobulin GM (γ marker) and KM (κ marker) allotypes have been shown to be associated with antibody responses to several viruses, but their role in immunity to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-the causative agent of Coronavirus disease 2019 (COVID-19)-has not been investigated. The aim of the present investigation was to determine the contribution of GM, KM, and FcγR genotypes to the magnitude of humoral immunity to SARS-CoV-2 and to the antibody-dependent cell-mediated cytotoxicity (ADCC) of SARS CoV-2 S-transfected cells. ADCC is a major host immunosurveillance mechanism against viruses and the leading mechanism underlying the clinical efficacy of therapeutic monoclonal antibodies.
View Article and Find Full Text PDFCancer Res
August 2025
University College London, London, United Kingdom.
γδ T cells can kill cancer cells via antibody-independent cytotoxicity (AIC) and antibody-dependent cellular cytotoxicity (ADCC). A better understanding of how these cytotoxic mechanisms are impacted by different cancer cells and different T cell donors could help identify improved immunotherapeutic strategies. To test the combinatorial interactions between T cell inter-donor heterogeneity (IDH), cancer cell inter-tumor heterogeneity (ITH), and multimodal γδ T cell killing, we performed a systematic single-cell phenoscaping analysis of >1,000 cultures of γδ T cells and colorectal cancer (CRC) patient-derived organoids (PDO).
View Article and Find Full Text PDF