98%
921
2 minutes
20
Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing, posing a significant threat to people's lives and property. The effectiveness of traditional photoelectric- or ionization-based detectors is inhibited when detecting fire smoke due to the variable shape, characteristics, and scale of the detected objects and the small size of the fire source in the early stages. Additionally, the uneven distribution of fire and smoke and the complexity and variety of the surroundings in which they occur contribute to inconspicuous pixel-level-based feature information, making identification difficult. We propose a real-time fire smoke detection algorithm based on multi-scale feature information and an attention mechanism. Firstly, the feature information layers extracted from the network are fused into a radial connection to enhance the semantic and location information of the features. Secondly, to address the challenge of recognizing harsh fire sources, we designed a permutation self-attention mechanism to concentrate on features in channel and spatial directions to gather contextual information as accurately as possible. Thirdly, we constructed a new feature extraction module to increase the detection efficiency of the network while retaining feature information. Finally, we propose a cross-grid sample matching approach and a weighted decay loss function to handle the issue of imbalanced samples. Our model achieves the best detection results compared to standard detection methods using a handcrafted fire smoke detection dataset, with APval reaching 62.5%, APSval reaching 58.5%, and FPS reaching 113.6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054114 | PMC |
http://dx.doi.org/10.3390/s23063358 | DOI Listing |
Transl Vis Sci Technol
September 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia.
Purpose: To investigate the short-term impact of exposure to smoke from vegetation burns on ocular surface symptoms and signs.
Methods: Woody bushfuels were burnt in an enclosed room (Flammability Laboratory, University of Tasmania, Australia) to generate particulate matter and monitored in real time (Dust Trak II). Eighteen participants (aged 20-63 years, 8 males and 10 females) fitted with respirators were seated 1.
Environ Int
September 2025
Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA. Electronic address:
Longer, more severe wildfire seasons are becoming the norm in fire-prone areas. Prescribed burning is a tool used to mitigate wildfire spread. However, prescribed burning also contributes to air pollution, including PM (particulate matter with aerodynamic diameter <= 2.
View Article and Find Full Text PDFLangmuir
September 2025
School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China.
The use of highly flammable materials such as foams, resins, and plastics has led to an increase in the frequency and severity of urban fires worldwide. To address this issue, this study developed a high-specific-surface-area mesoporous metal-organic framework (Fe-MOFs) with heat trapping and smoke adsorption. The Fe-MOFs, zinc tailings (ZTs), piperazine pyrophosphate (PAPP), and sodium lignosulfonate (LS) were used to modify rigid polyurethane foam (RPUF).
View Article and Find Full Text PDFJ Air Waste Manag Assoc
September 2025
Desert Research Institute, Reno, Nevada, USA.
SmokePath Explorer is a web-based decision-support tool for California, U.S.A.
View Article and Find Full Text PDFHealth Sociol Rev
September 2025
School of Sociology, The Australian National University, Canberra, Australia.
The health implications of prolonged wildfire smoke exposure - such as that seen during the 2019-2020 Australian bushfires - are a major concern in public health, not only in Australia but in many fire-prone areas globally. One group identified as potentially more susceptible to smoke exposure than the general population are pregnant women. Based on a study of how pregnant women and parents with newborn babies experienced the bushfire smoke event in Canberra and the NSW southeast coast, the paper examines how the placenta was figured across two domains during this time.
View Article and Find Full Text PDF