A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Steel Strip Defect Sample Generation Method Based on Fusible Feature GAN Model under Few Samples. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to the shortage of defect samples and the high cost of labelling during the process of hot-rolled strip production in the metallurgical industry, it is difficult to obtain a large quantity of defect data with diversity, which seriously affects the identification accuracy of different types of defects on the steel surface. To address the problem of insufficient defect sample data in the task of strip steel defect identification and classification, this paper proposes the Strip Steel Surface Defect-ConSinGAN (SDE-ConSinGAN) model for strip steel defect identification which is based on a single-image model trained by the generative adversarial network (GAN) and which builds a framework of image-feature cutting and splicing. The model aims to reduce training time by dynamically adjusting the number of iterations for different training stages. The detailed defect features of training samples are highlighted by introducing a new size-adjustment function and increasing the channel attention mechanism. In addition, real image features will be cut and synthesized to obtain new images with multiple defect features for training. The emergence of new images is able to richen generated samples. Eventually, the generated simulated samples can be directly used in deep-learning-based automatic classification of surface defects in cold-rolled thin strips. The experimental results show that, when SDE-ConSinGAN is used to enrich the image dataset, the generated defect images have higher quality and more diversity than the current methods do.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054326PMC
http://dx.doi.org/10.3390/s23063216DOI Listing

Publication Analysis

Top Keywords

strip steel
12
defect
9
defect sample
8
steel surface
8
steel defect
8
defect identification
8
defect features
8
features training
8
steel
5
samples
5

Similar Publications