A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Numerical Study of ITZ Percolation in Polyphase Concrete Systems Considering the Synergetic Effect of Aggregate Shape- and Size-Diversities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The percolation of the interfacial transition zone (ITZ) is generally regarded as an important factor that may accelerate the penetration of aggressive agents in concrete materials, and its threshold is largely determined by the features of aggregates. In most numerical studies about ITZ percolation, both fine aggregates and coarse aggregates are assumed to be the particles of uniform shape, and their size distributions are generally strung together by a single function, which is quite different from reality. To quantify the ITZ percolation associated with the polydispersity of aggregate shapes and size gradations in a more realistic way, the two-dimensional (2D) meso-scale model of concrete is generated by simplifying coarse aggregates and fine aggregates as polygons and ovals, respectively. Moreover, the size gradations of them are also represented by two separate expressions. By combining these models with percolation theory, the percolation of ITZ in the 2D case is explicitly simulated, and the influence of aggregate shape- and size-diversities on the critical threshold is studied in detail. Based on the simulated results of , an empirically analytical expression is further proposed to fast predict the ITZ percolation, and its reliability is verified. The results show that the ITZ thickness, average aggregate fineness, coarse aggregate shape, and fine aggregate shapes are the four main contributing factors to the ITZ percolation. Compared with the existing literature, the proposed model here has a broader range of applications (e.g., mortar, concrete, and other granular systems) in the 2D case and can provide the larger predicted results, which may be closer to reality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056817PMC
http://dx.doi.org/10.3390/ma16062515DOI Listing

Publication Analysis

Top Keywords

itz percolation
20
itz
8
percolation
8
aggregate shape-
8
shape- size-diversities
8
fine aggregates
8
coarse aggregates
8
aggregate shapes
8
size gradations
8
aggregate
6

Similar Publications