Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis.

Foods

Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai'an 271018, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ginger is one of the most popular spices and medical herbs with its unique pungent flavour and taste. Although there has been much research into the drying methods of ginger, the effect of drying parameters in hot air convective drying on ginger quality needs to be explored in depth. This study investigated the differences in drying behaviour and quality characteristics of ginger with the variables of temperature, thickness, and loading density. The moisture states and diffusion pattern in the different stages during the drying process were analysed using low-field NMR techniques. The results of quality evaluation showed that the temperature greatly influenced the colour and gingerol content of dried ginger, and the thickness of a ginger slice greatly influenced the rehydration rate. Optimal drying conditions were determined by considering a combination of specific energy consumptions with quality retention based on the response surface methodology: a temperature of 66.41 °C, thickness of 2 mm, and loading density of 5 kg/m. HS-GC-IMS combined with multivariate chemometrics was used to achieve the characterisation of flavour profiles and fingerprinting of dried ginger. The principal component analysis and correlation analysis revealed that the alterations in ginger quality were intimately related to moisture diffusion during drying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047944PMC
http://dx.doi.org/10.3390/foods12061283DOI Listing

Publication Analysis

Top Keywords

drying
9
ginger
9
hot air
8
air convective
8
convective drying
8
drying ginger
8
drying behaviour
8
behaviour quality
8
quality characteristics
8
ginger quality
8

Similar Publications

HO and CO Sorption in Ion-Exchange Sorbents: Distinct Interactions in Amine Versus Quaternary Ammonium Materials.

ACS Appl Mater Interfaces

September 2025

The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.

This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.

View Article and Find Full Text PDF

Next-Generation Food Drying: Specialized and Smart Approaches to Boost Efficiency and Quality.

Compr Rev Food Sci Food Saf

September 2025

Department of Life Science (Food Science and Technology Division), GITAM University, Visakhapatnam, Andhra Pradesh, India.

Drying is a critical unit operation in food processing, essential for extending shelf life, ensuring microbial safety, and preserving the nutritional and sensory attributes of food products. However, conventional convective drying techniques are often energy-intensive and lead to undesirable changes such as texture degradation, loss of bioactive compounds, and reduced product quality, thereby raising concerns regarding their sustainability and efficiency. In response, recent advancements have focused on the development of innovative drying technologies that offer energy-efficient, rapid, and quality-preserving alternatives.

View Article and Find Full Text PDF

The objective of this observational study was to describe the association between lag time from calving to first milking for colostrum harvest. Colostrum samples from primiparous and multiparous Holstein cows (n = 640) from a single herd milking approximately 5,200 cows 3 times daily in a 100-stall rotary parlor were used in this prospective cohort study. Calves were removed immediately after calving and not allowed to suckle their dam.

View Article and Find Full Text PDF

Differences in physicochemical and functional properties of from-concentrate and not-from-concentrate apple pomace: an investigation based on different drying methods.

J Sci Food Agric

September 2025

Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.

Background: Apple pomace (AP), a byproduct of apple processing, is nutrient-rich, and its properties are influenced by both the quality of the apples and the juice extraction process. Drying technology can enhance its economic utilization. This study compared the effects of industrial drum drying (ID) and laboratory hot-air drying, heat pump drying and freeze drying (FD) on the physicochemical, functional and structural properties of from-concentrate AP (FC-AP) and not-from-concentrate AP (NFC-AP).

View Article and Find Full Text PDF

Barley is the main raw material for the production of malted beverages. However, it is an important source of food that is gaining attention due to its composition and numerous health benefits. Considering the emerging trend in the development of functional foods, this study used bibliometric analysis to assess the cumulative literature on the impact of drying, storage, and industrial processing (which are crucial for the development of functional foods) on the nutritional value of barley.

View Article and Find Full Text PDF